
The Design and Implementation of a Role Model
Based Language, EpsilonJ

Supasit Monpratarnchai

Tamai Tetsuo
The University of Tokyo

{supasit,tamai}@graco.c.u-tokyo.ac.jp

In the social reality, objects communicate with each other by
means of assuming roles to establish collaboration, and then can
adaptively change their roles to obtain other interaction
possibilities. To achieve the goal of supporting and realizing such
object collaboration and adaptation in the object-oriented
technology, especially in Java, a new adaptive role-based model
Epsilon and a corresponding language EpsilonJ have been
proposed. In this paper, we present the background of adaptive
role-based models, and then focus on the design of this Epsilon
model and its language. A program written in EpsilonJ must be
translated into executable code to execute. We propose a
translation scheme of mapping EpsilonJ syntax to the standard
Java. With this translation scheme, we implemented a practical
syntax translator as a preprocessor of EpsilonJ program, through
lexical analysis and parsing. Evaluation shows that our translator
can effectively perform transformation in high accuracy, and
translated programs can be executed more efficiently than the
existing implementation of EpsilonJ.

I. INTRODUCTION

Object orientation is a software engineering approach that
models a system as a group of interacting objects. Each object
represents some entities of interest and is characterized by its
class, its states, and its behaviors. Several concepts are featured
in object orientation such as modularity, encapsulation,
inheritance, and polymorphism. With these concepts, many
benefits are associated; e.g. reusability, modular architecture,
increased quality, client/server applicability, etc., which drive
object orientation to become a leading paradigm in
programming languages, knowledge representation, design and
modeling, and database.

The data abstraction principle of object orientation can be
compared with the interaction of objects in the real world; e.g.
the same operation of turning-on a device is implemented in
different manners inside different kinds of devices, depending
on their functionalities. The philosophy behind object
orientation however rests on the assumption in which the
attributes and operations of objects are 1) objective, i.e. they
are the same whatever the object interacting with them is,
unless this interacting object is passed as an explicit parameter,
and 2) independent from the interaction with another object
(session-less) [1]. Accordingly, this view sometimes limits the
usefulness and potentiality of object orientation in several ways
[1, 2].

To alleviate those limitations at the level of programming
constructs, particularly for security, usability, and adaptability

reason, different operations should be offered to different
callers by means of access control, and the state of the
interaction with each caller should also be kept track by means
of sessions. In the role-based access control model (RBAC) [3],
access rights are associated with roles and callers, i.e. the
callers of operations are made members of appropriate roles,
thereby acquiring the roles’ permissions. Moreover, sessions
are designed as the mappings between a caller and an activated
subset of roles which are assigned to the caller. With this effort
to solve those limitations of object orientation, new general
concept about roles was originally introduced, and the
corresponding role-based models were also proposed.

II. BACKGROUND

A. Adaptive Role Model
In addition to the introduction of the role concept previously

mentioned, let us consider the role from another point of view.
In general, objects in social reality communicate with each
other by means of assuming roles, i.e. the way an object can
interact with other objects is provided by properties and
abilities of its associating role. This concept is considered as
collaboration between objects via roles. With this scheme, to
obtain other interaction capabilities, objects also adaptively
change their roles without losing their own identities, which is
called the object adaptation.

Although the current object-oriented technology can
efficiently represent objects in software modeling and
programming languages, it is still difficult to describe such
behavior based on object collaboration and adaptation scheme.
This is because object orientation does not support the
construction in which objects adaptively participate in or leave
collaboration. Moreover, the current widely-used object-
oriented modeling and programming languages do not directly
support such flexibility and adaptability [4, 5]. Based on this
motivation to conveniently support and realize the object
adaptation and collaboration between objects, several adaptive
role-based models have been proposed as computational
models satisfying those requirements and overcoming
limitations.

The notion of collaboration is well accepted in object-
oriented design, represented by a set of objects together with
interactions among them. In collaboration, a group of objects
cooperate to perform a task or to maintain an invariant property,

and a role is a part of an object that fulfills its responsibilities
in the collaboration [7]. The main objective of most role
models is to support the description of this kind of
collaboration, not just at the design level but also at the
programming level. Thus, role-based model can be considered
as collaboration-based design, in the sense that the model is
designed by composing several roles collaborating with each
other to achieve organizational goals.

B. Epsilon Model and EpsilonJ
Epsilon model is one of those adaptive role-based models

sharing the same objectives in our scope of interest. This
model aims to support description of collaboration between
objects not only at the design level, but also at the object-
oriented programming level, and also to devise a mechanism
for object adaptation to environments [5].

In this model, collaboration is represented by a collaboration
field called a context, featuring several roles. An object outside
the context called a player can participate in this collaboration
field or interact with other objects, by assuming one of the
roles. With these model components, an interaction between
players in the context can be performed only via role to
achieve collaboration [6]. A dynamic role binding mechanism
is used to let a player assume an appropriate role. The
interacting player then acquires affordances [1] (properties and
operations) provided by its associating role, after the binding
by means of role casting and delegation mechanism, which
will be described in the next section.

Figure 1 depicts the static structure and dynamic behavior of
Epsilon model as described. Since each context represents its
own independent concern, a separation of concerns (SoC) is
explicitly supported by the model. The interactions between
concerns are realized through players simultaneously assuming
roles of different contexts.

Recently, role-based models have been realized and
implemented as an extension of the existing programming
languages, typically Java [2, 5]. Similarly, to realize the
Epsilon model at the programming level, the corresponding
language EpsilonJ was defined as the extension of Java with
some new constructs. With EpsilonJ, both static structure and
dynamic behavior in the Epsilon model can be explicitly
represented. In the next section, we present an EpsilonJ
language specification, illustrated with some examples to show
how the Epsilon model components can be declared in the
EpsilonJ syntax and be executed dynamically.

III. LANGUAGE SYNTAX

Model Components Declaration
Contexts and players are declared like Java classes using the

context and player keyword, respectively. Declaration of
role is placed within the context similar to an inner class, using
role keyword. Qualifier static is declared before the
keyword role when there is exactly one instance of this role
in the containing context instance. Although the context and
roles can be declared like a class and inner classes in the

Figure 1. Static Structure and Dynamic Behavior of Epsilon Model.

traditional Java, roles in our model are more concrete than
inner classes, and a coupling between a context and its roles is
stronger than that of an outer and inner classes. The following
code shows an example of context, roles, and player
declaration of a business company.

1 context Company {
2 static role Employer{
3 void pay(){ Employee.getPaid(); }
4 }
5 Role Employee requires { void deposit(int i); }{
6 int save, salary;
7 void getPaid(){
8 save += salary; deposit(salary);
9 }
10 }
11 }
12 player Person {
13 int money;
14 void deposit(int s){ money += s; }
15 }

Dynamic Role Binding
At a first time, a player instance can be dynamically bound

to any role of a context by being sent as an argument to the
bind for static role or newBind for non-static role of the
targeting role, qualified with the context instance reference, as
shown in line 19-20 of the following code. After that, a player
instance can be re-bound to another role later, by just being
sent to bind instance method, invoked by a new role as shown
in line 21.

16 Company todai = new Company();
17 Person sasaki = new Person();
18 Person tanaka = new Person();
19 todai.Employee.newBind(sasaki);
20 todai.Employee.newBind(tanaka);
21 todai.Employer.bind(sasaki);
22 ((todai.Employer)sasaki).pay();
23 ((todai.Employee)tanaka).getPaid(100);

Role Casting and Delegation
Once a player is bound to a role, the player acquires an

access to the role instance and thus can get the attributes or
invoke the operations of the role, by being cast to the
corresponding role as shown in line 22-23. This mechanism is
called a Role Casting, and the mechanism of role method

invocation through the binding can be regarded as a kind of
delegation, and is called Role Delegation. An explicit role
casting notation is required to resolve ambiguity, because a
player can be bound to multiple roles. Moreover, by indicating
role casting, a static type checking gets possible.

Role Requirement Interface
There should be some interaction or coupling between the

player and the role that are bound together, so that both state
and behavior of the player can be affected by the binding. For
this purpose, a way of defining an interface to a role is
introduced, and it is used at the time of binding with a player,
requiring the player to supply that interface. This mechanism is
regarded as a Role Requirement, and can be declared using
requires phrase as shown in line 5. With this requirement
interface, role can be considered as a double-faced interface,
which allows the connection of a player to a context [2]. The
interface is double in which it specifies the methods that a
player must offer for playing the role (role requirement) and
the methods offered to the player playing the role (affordances).

IV. PROPOSED TRANSLATION SCHEME

The source code written in EpsilonJ (EpsilonJ program)
following the proposed syntax cannot be compiled and
executed directly by a Java compiler in the standard JRE,
because of the introduction of some new constructs. Thus,
before the compilation and execution process, a translation is
required as a preprocessor, to syntactically verify the EpsilonJ
program and translate it into the pure standard Java. In the
current version of EpsilonJ, the Java annotation feature is used
to implement the EpsilonJ constructs [4], and so the external
syntax is different from what we have described above,
resulting in the significant runtime overhead. From the
background introduced in the previous sections, to obtain the
translation without encoding by annotations, in this paper we
propose another approach for EpsilonJ implementation, by
designing the translation scheme and compiling it as a practical
syntax translator.

A. Dynamic Role Binding in the Role Implementation
Because a context, role, and player are equivalent to a

common Java class, they are simply translated to class. To
implement a dynamic binding, additional method bind is
added to any role implementation, to bind a player to itself and
bind itself to the book-keeping structure of a player [2] (which
will be described later), as shown in the following code.
class Employer {
EpsilonJ$Object _super;
void bind(EpsilonJ$Object o){
 _super = o;
 o._setRoleInstance(“Employer”,this); }

 ... }

B. Role Re-Binding and Role Instance Repository
Furthermore, additional newBind method is also added to

the context corresponding to each role, to implement re-

binding feature, by creating a new role instance and binding a
player to it (by invoking bind). To keep track of binding
players, a context provides the repository of each role instance,
i.e. a field for static roles, and a vector for non-static roles.

public class Company {
 Employer roles$Employer = null;
 Vector roles$Employee = new Vector();
 void newBind$Employer(EpsilonJ$Object o) {
 Employer tmp = new Employer();
 tmp.bind(o); roles$Employer = tmp; }
 void newBind$Employee(Employee$Super o) {
 Employee tmp = new Employee();
 tmp.bind(o); roles$Employee.add(tmp); }
...

C. The Iteration of Role Group
Since non-static role instances are translated into vectors

(which are considered as role groups), whenever they invoke
their own methods, the method invocation must be translated
into Iterator abstract list interface, to iterate the method
on all role instances. The following code shows a translation of
pay in line 3 of the previous code.

void pay(){
for(Iterator<Employee> i=roles$Employee.iterator();
i.hasNext();) { i.next().getPaid(); }

}

D. Role Requirement Interface
For the requirement interface, it will be extracted from the

role declaration, and translated into a separate interface in the
context.

interface Employee$Super extends EpsilonJ$Object {
 void deposit(int s);
}

E. Player with a Book-Keeping Structure
Each person instance should possess its own book-keeping

structure to keep track of the current role being bound, and
also the history of its role binding. Thus, we add a new class
extending the corresponding player class as follows, with the
HashMap data structure as well as the operations to set and
get role instances.

Class Person$EpsilonJ extends Person
implements EpsilonJ$Object {
HashMap _roles = new HashMap();
public Object _getRoleInstance(String key){
 return _roles.get(key);
}
public void _setRoleInstance(String k, Object v){
 return _roles.put(k,v);
}

}

To make this inheritance effective for all types of players,
another corresponding top-most interface is also declared as
follows.

Interface EpsilonJ$Object{
 public Object _getRoleInstance(String key);
 public void _setRoleInstance(String k, Object o);
}

F. Role Binding, Casting, and Delegation
Based on the translation scheme of EpsilonJ components

described above, dynamic role binding, role casting, and role
delegation are explicitly translated as the binding mechanism
(implemented within the context) and book-keeping structure
(implemented within the player) as the following example
shows.

todai.newBind$Employer(sasaki);
todai.newBind$Employee(tanaka);
((Company.Employer)sasaki._getRoleInstance

(“Employer”)).pay();
((Company.Employee)tanaka._getRoleInstance

(“Employee”)).getPaid(100);

V. TRANSLATOR IMPLEMENTATION

From the language syntax described in section III, we also
derived the structure of concrete syntax which is expressed in
the Extended Backus-Naur Form (EBNF) of the Context-Free
Grammars (CFG), by modifying and extending that of Java
syntax. Based on this syntax structure in EBNF together with
the translation scheme introduced in the last section, we
developed the practical EpsilonJ translator straightforwardly
through lexical analysis and parsing using Java-Compiler
Compiler tool (JavaCC) provided by Sun Micro-systems [8].

VI. EVALUATION

To determine the powerfulness and potentiality of our
approach, we conducted the evaluation in two aspects; the
accuracy of translation and the execution efficiency of
translated program. The accuracy of our translator is evaluated
based on several test cases containing the EpsilonJ program
generated in random sizes and patterns following the proposed
EpsilonJ syntax. As an experimental result, 92.5% of these test
cases were successfully translated by the EpsilonJ translator,
i.e. their syntax conforms to that specified within the translator.
By investigation throughout the program source code, we have
found that several failed cases are due to the error of some Java
syntax such as the repetition of identifiers, but there is no error
related with the structure of EpsilonJ syntax. This failure is
intended to be improved in future work.

In fact, any role-based programs can also be written in a
traditional object-oriented programming language, without
using specific object collaboration and adaptation constructs.
Thus, to evaluate the efficiency of our EpsilonJ programs
compared to those implemented in pure Java programming,
another evaluation is also conducted. We designed some case
studies, implemented into EpsilonJ programs, and get
translated by our EpsilonJ translator. For each case, we also
hand-coded a Java program which performs the identical
functions. Both programs are then compiled and executed,
measuring the overhead used for compilation and execution.
Table I shows the compilation and execution time in
milliseconds for both translated EpsilonJ programs and the
traditional Java programs of three case studies.

TABLE I
COMPILATION AND EXECUTION TIME

Case Study EpsilonJ
Program

Traditional
Program

Business Company 4.11 ms 2.14 ms
Integrated System 4.92 ms 2.64 ms

Basic Printer 6.39 ms 3.08 ms

Although the result indicates that the translated EpsilonJ

programs require more execution time than those of traditional
Java, by approximately 2 times; however, these programs are
more efficient than the current version of EpsilonJ
implementation proposed in [4, 5], in which the execution
overhead can be reduced by 5-10 times. By comparing to this
execution time, the overhead of translation process in the first
evaluation is not significant, as almost all test cases were
translated in very short time, regardless of the input size.

VII. DISCUSSION AND CONCLUSION

We present our role-based model called Epsilon, and the
corresponding language EpsilonJ with syntax specification.
Then, we propose another approach to compile EpsilonJ
programs by means of translation, performed by our newly
developed EpsilonJ translator with high accuracy. The
translation follows our proposed translation scheme for
mapping the EpsilonJ program to the executable Java program.
The evaluation shows that the EpsilonJ programs translated by
our proposed approach of translation scheme, were executed
more efficiently than the existing implementation approach of
EpsilonJ.

ACKNOWLEDGMENT

The authors would like to thank Tetsuo Kamina, a member
of our research group, for the inspiring idea and useful
discussion on the model translation programming.

REFERENCES
[1] M. Baldoni, G. Boella, and L. van der Torre, “Interaction among Objects

via Roles: Sessions and Affordances in Java,” Symposium on Principles
and practice of programming in Java, Vol.178, pp. 188-193, 2006.

[2] M. Baldoni, G. Boella, and L. van der Torre, “Interaction between
Objects in powerJava,” Journal of Object Technology, Vol.6, No.2,
Special Issue OOPS Track at SAC 2006, pp. 5-30, 2007.

[3] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, “Role-based access
control models,” IEEE Computer, pp. 38-47, 1997.

[4] T. Tamai, N. Ubayashi, and R. Ichiyama, “An Adaptive Object Model
with Dynamic Role Binding,” Proceedings of ICSE’05, pp. 166-175,
Missouri, USA, May, 2005.

[5] T. Tamai, N. Ubayashi, and R. Ichiyama, “Objects as Actors Assuming
Roles in the Environment,” LNCS4408: Software Engineering for Multi-
Agent Systems V, Springer-Verlag, pp. 185-203, 2007.

[6] G. Boella and L. van der Torre, “A foundational ontology of
organizations and roles,” Proceedings of DALT’06 workshop at
AAMAS’06, 2006.

[7] M. VanHilst and D. Notkin, “Using Role Components to Implement
Collaboration-based Designs,” Proceedings of ACM Conference
OOPSLA’96, pp. 359-369, 1996.

[8] JavaCC homepage by Sun Microsystems: https://javacc.dev.java.net/

