Invited Paper

On Japanese-based Programming

TETsuo Tamar*

Since many of the existing programming languages have been designed in English speaking countries, their
phrases and structures are influenced by the English convention. However, as the technology of Japanese pro-
cessing has made rapid progress, time is ripe for reconsidering new Japanese-based computer language design.
This paper surveys the current status of ‘‘Japanese programming’’ and also reports on an experiment of in-

vestigating its usefulness.

1. Introduction

Many of the existing programming languages have
been designed in English-speaking countries and their
phrases and structures are more or less influenced by the
english grammar and vocabulary. There used to be
some efforts to ‘‘Japanize’’ programming languages but
their scope of activities was limited, typically taking
common languages like Fortran and Cobol and
translating their keywords into corresponding Japanese
words. Naturally, those languages failed in attracting at-
tention of many Japanese programmers.

As the technology of Japanese input and output
devices has been making rapid progress, time is ripe for
reconsidering construction of new Japanese-based pro-
gramming languages and programming style.

The principal motive for developing Japanese-based
programming is to let broad classes of the Japanese
population have easy access to programming. Personal
computers have enlarged the opportunities of ordinary
people to come in contact with computers, thus it is
desirable to provide them with means of programming
in a familiar style. At the same time, the shortage of pro-
fessional software engineers is currently a serious prob-
lem. The Japanese programming may help alleviate this
shortage problem in two ways. One is to open a way for
end-users to produce software by themselves, thus
reducing software demands. The second is to enhance
software productivity and maintainability in Japan.
This is expected, because Japanese is a mother tongue
for most of software engineers in Japan and specifica-
tions for such software are commonly written in
Japanese, thus the gap between specifications and pro-
grams is expected to be narrowed if Japanese-like nota-
tions and phrases are admitted in the programming
language.

Some may argue that programming is a task of a
universal nature and a programming language should
be considered as a means to express formal and univer-

*Graduate School of Systems Management, University of Tsukuba,
Tokyo, Japan.

Journal of Information Processing, Vol. 13, No. 1, 1990

sal concepts just like mathematical notations. In that
sense, a programming language based on a specific
culture is not useful, even does harm. To this, we may
contend that this approach can be expected to bring
new aspects to programming by incorporating some
features of the Japanese language or even Japanese way
of thinking. Also, it can be one step towards the multi-
lingualization of computer usage thus help spreading
computer technology to non-English cultures.

From the above point of view, we conducted a survey
on programming languages and specification descrip-
tion languages based on Japanese and also made an ex-
periment using some of those languages to examine the
effectiveness and potentialities of ‘‘Japanese programm-
ing”’. In the followings, we report the results of this
survey and the experiment and make discussions.

2. Overview of Japanese Programming

In this paper, we define Japanese programming as
‘‘software development activities in the environment
where specifications/ programming languages, their
compilers and other related tools are used which incor-
porate notations, constructs and/or grammars based
on the Japanese language.’” There is a case in which
Japanese text processing is included in the category of
Japanese programming, i.e. programming using
languages with Japanese character-string handling
features such as Japanese SNOBOL or more
sophisticated tools, but here we exclude them from our
consideration.

Some of Japanese programming languages are design-
ed by transforming existing (English-based) languages

Japanese-based programming languages
|
+—Japanized versions of existing languages

Japanese-based [‘

computer lang- |
uages —keyword and grammar level

‘ user-defined identifier level

Japanese-based new programming languages
Japanese-based specification languages

Fig. 1 Classification of Japanese-based computer languages.

50

like Cobol, Fortran and C. We can divide this type of
languages into two classes by considering to what extent
Japanese features are introduced. Thus we can classify
the Japanese-based computer languages as shown in
Figure 1.

When we say Japanese programming, the word
Japanese can imply two different aspects: 1) not English
but Japanese based programming; 2) not artificial but
natural language based programming. Most of
Japanese programming languages are designed from
the former standpoint. The latter is not unique to
Japanese and actually there have been works upon this
idea taking English as a natural language (e.g. [5], [13]).
Many Japanese-like specification languages are taking
the latter standpoint as described in the following sec-
tion.

3. Specification Description Languages

For writing specifications, be it at requirement level
or at systems design level, it is desirable to have a
description language that allows natural and readable
expressions. The natural language is the most conve-
nient for that purpose, except that it is often ambiguous
and is not easy to treat by computers.

Japanese-based specification languages aim at some
middle point between natural languages and artificial
formal languages. Their objectives are various but
typical ones include: 1) standardization of specification
writing; 2) automatic generation of programs from
specifications; 3) unified description of specifications
and programs; and 4) software development by end-
users.

According to their objectives, the features of these
languages vary. They can be roughly divided into two

T. TAMAL

Japanese-based specification language
description oriented languages:
NBSG, ICAS-REUSE, JRDL
program synthesis oriented languages:
generation type: KIPS, PGEN-1, SAGE
reuse type: ARIES/I. APSS

Fig. 2 Classification of Japanese-based specification languages.

groups; one emphasizes the description capabilities and
the other emphasizes automatic program synthesis. The
latter can also be divided into two; one synthesizes pro-
grams every time from scratch and the other reuses
stored program components. Figure 2 shows the above
classification and system examples. Table 1 lists typical
systems. At the moment, all of these systems are
research prototypes.

4. Programming Languages

Early attemps to change keywords of Cobol and For-
tran into Japanese words go back to 1960’s. Those
languages were not widely accepted, mainly because
computers did not have the capability of handling
Japanese characters (kana and kanji) in those days,
thus Japanese keywords had to be spelled by alphabets.

Since Japanese character processing became common
around 1978-1980, many programming languages have
come to allow kana and kanji use in character-strings
data, comments, and user-defined identifiers. No par-
ticular necessity seems to be felt so far by most program-
mers to use Japanese words in place of keywords of con-
ventional languages.

Table 1 Japanese-based specification languages/systems.

Language/system Developer Characteristics Major target domain Object language Reference

KIPS Sugiyama et al Automatic program File processing Hyper-Cobol [25]
(Fujitsu) derivation [26]

NBSG Shiino et al Standardizing System software C (indirect) [14}
(Oki) specification writing [21]

PGEN-1 Iwamoto et al Automatic program Banking system Cobol/S [6]
(NEC) derivation

ARIES/1 Harada Synthesis from reusable File processing Hyper-Cobol [4)
(ORIEPI) components

ICAS-REUSE Chigira et al Reuse of specifications Business applications — m
(Hitachi)

SAGE Gyotoku et al Automatic program File processing A high-level [3]
(Mitsubishi) derivation language for [271

business

APSS Uehara et al Synthesis from reusable Data-base retreival A data base [29]
(Osaka Univ.) components language [30]

JRDL Ohnishi et al Support validating General but mainly — [20)

(Kyoto Univ.) specifications

business applications

On Japanese-based Programming

Table 2 Japanese-based programming languages/systems.

51

Language/system Developer Characteristics Major target domain Target users Reference
Nihongo AFL Sugano et al All data from numeric to Text processing novices [11]
(Matsushita) programs are treated as [22)
char-strings. A pioneer [23]
language on PC
Syo-syusin Mizutani Snobol like language for Text processing students [15]
(TWCU) teaching literature [16]
(17)
Mind Katagiri Stack based language in- Business appl. & from novice 7
(TWCU) fluenced by FORTH system software to SE [8]
9
YPS Fujitsu Program generation from Various (generate Cobol, SE [2]
chart language YAC 11 Fortran & C programs) 9]
Nihongo Kimura Generate Cobol programs Banking business average
program (Nagano from Japanese-like expres- applications programmers [10]
Kenshinren) sions.
NBSG/PD Shiino et al Generate C programs from Control software SE [24)
(Oki) Japanese-like expressions
SPPM Morimoto et al Object-oriented language Business applications End-users [18]

(Toshiba)

On the other hand, some new attemps have been
made to design new programming languages introduc-
ing features of Japanese. Table 2 shows typical ex-
amples. We take some languages in the table to give de-
tailed explanations below. Among these, Nihongo
AFL, Syo-syusin, and Mind are the languages that we
chose for a programming experiment to be described
later.

4.1 Nihongo AFL

The design of Nihongo AFL was started as early as
1977 by K. Ueda, J. Sugano and others as a Japanese
version of AFL, a language specialized in processing
character data, which had been developed earlier by the
same group. Nihongo AFL is a simple language that
runs on personal computers under CP/M or MS/DOS.
In 1983, its processor was released as a commercial soft-
ware package by the name of Wakan and sold a few
hundred copies, but now no sales efforts are being
taken.

One of the unique features of this language is that it
uniformly treats characters, numbers, and even pro-
grams as the same character-string data. Another
feature is its programming style that lets programmers
write software by piling up definitions of words.

Nihongo AFL is too simple for large scale software;
its control structures such as loops and conditional
statements have too little variations; it has no local
variables or other means for encapsulation; it has no
logical expressions and very few numerical expressions.
Even with these drawbacks, Nihongo AFL should be
given high evaluation as a pioneer in the area of original
Japanese-based computer language exploration and for
its unique language design.

4.2 Syo-syusin

Syo-syusin was created by S. Mizutani for the educa-
tional purpose to teach literature classes at Tokyo
Women’s College. its major objective is to manipulate
Japanese character-strings (in that sense, similar to
Nihongo AFL) and is carefully designed to allow expres-
sions that can be read as natural Japanese sentences.

The first version of its language processor is called
REDLIPS (REDuction-to-LIst Processing System, the
language name Syo-syusin is a literal translation of
‘“(small) red lips’’) and implemented on TOSBAC
ACOS 400, a small business computer which is rather
old model with no kanji handling function. Thus, the
current version of Syo-syusin uses katakana (Japanese
alphabet) for pre-defined keywords and Roman letters
for user-defined identifier names. This awkward situa-
tion is going to be altered in a new version now being im-
plemented on a workstation HITAC 2020.

Syo-syusin has only a small number of simple data
types: strings and numbers (real, integer and binary).
On the other hand, its control structures are as rich as
found in conventional programming languages: func-
tions and subroutines, sequences, conditionals, and
loops. String manipulating operations are abundant,
especially rich in pattern matching functions, because
text-processing is the main target of this language.

Probably, the nicest feature of Syo-syusin is its abil-
ity to express concisely without introducing unnatural
Japanese phrasing. In designing this kind of languages,
compatibility between conciseness and readability is a
critical issue. Syo-syusin is fairly successful in this
point. Although its use has been limited within a univer-
sity, Syo-syusin is worth studying as a language model.

52

4.3 Mind

Mind was designed.by A. Katagiri and its processing
software is sold by his company, RGY Corporation.
The software package, which runs on personal com-
puters such as NEC PC9800 Series, Fujitsu FM Series,
and hitachi 2020, is actually the only Japanese program-
ming language processor currently marketed. The
language is based on the design of FORTH, a stack
based language, mainly for PC use. FORTH adopts the
reverse Polish notation for writing mathematical expres-
sions. The fact that the word ordering of reverse Polish
expressions fits well to Japanese convention was the
original motivation for Katagiri to attempt designing a
Japanese-based language on FORTH.

One of the key features of Mind is its distinctive use
of kanji, katakana, hiragana, and Roman letters. Kan-
ji, katakana and Roman letters are used for spelling
identifiers and hiragana can be inserted freely except in
places where specific keywords spelled in hiragana that
define cases (subject, object, direction-to, direction-
from, etc.) are expected. The processor simply ignores
hiragana except those keywords, which allows natural
Japanese expressions without any load to the processor.

The processing package includes functions for debug-
ging, graphics, mouse manipulation and communica-
tion, which make it possible to write practical-scale soft-
ware in Mind. The package has sold several thousand
copies and has shown that a Japanese-base programm-
ing language has a potential of acquiring wide use.

4.4 YPS and Chart Languages

Many structured chart notations for software design
and programming have been proposed and are being
used in Japan such as PAD, HCP, PSD, and YAC II.
Many of them have drawing and description support
tools, in which Japanese expressions are allowed.

YPS is one of such systems developed by Fujitsu. It is
based on YAC II chart, on which a Japanese-based for-
mal language (or language generator) is defined. The
description can be transformed into programs in an ap-
propriate language. Currently, three versions are
available: systems for Cobol, Fortran and C. It has
been successfully used for developing large-scale system
software.

S. Experiment

We conducted an experiment of writing programs us-
ing Japanese programming languages. The purpose of
this experiment was to evaluate the significance of
Japanese programming in general and not to compare
individual languages or programming systems.

We chose three languages, Nihongo AFL, Syo-
syusin, and Mind by the following criteria: 1) manuals
that describe language specifications are available; and
2) language processors (compilers or interpreters) have
been developed. Although the three languages satisfy

T. TAMAI

these conditions, only the processor of Mind was
available for this experiment. Thus, the evaluation of
programs written in the experiment was done mainly by
manual inspection.

5.1 Example Problems

We chose three example problems, considering the
following points:

(1) The size of programs should not be so large, but
say between 50 to 100 lines of statements;

(2) The problem should not be too simple, in-
cluding appropriate logical complexity;

(3) Three problems should be chosen from different
areas;

(4) Problems can be simply specified so that there is
little room for misunderstanding or arbitrary interpreta-
tion.

Selected problems are as follows.

(Problem 1] Kana Frequency Counting

Given a text of kana, output frequency table of kana ap-
pearing in the text in descending order.

[Problem 2] Date Transformation

First, write a subroutine that determines a given year to
be a leap year or not. Then, given a year and a sequence
number of a day of the year, output the month and the
day, using the previous subroutine.

[Problem 3] Prime Number Enumeration

Given a natural number n, output all prime numbers be-
tween 1 to n.

5.2 Subjects

Three persons were chosen as subjects. We could
have selected them from those with no programming ex-
perience, but in that case, we were afraid, it would be
difficult to determine the criteria for selecting subjects,
experiment design, and the way of managing the experi-
ment. Therefore, we decided to choose subjects from
software engineers with enough programming ex-
perience except Japanese programming. As a matter of
fact, the three subjects are none other than the members
of this projects.

Table 3 shows the profile of the subjects.

Table 3 Profile of subjects.

Subject Sex Experience Fluent languages
A male 18 years Lisp, Fortran, PL/1
B female 6 years Fortran, C, Basic
C male 5 years Prolog, Fortran

Table 4 Combinations of subjects, problems and languages (A, B,
C are subjects.).

Mind Syo-syusin Nihongo AFL
Problem 1 A B C -
Problem 2 C A B
Problem 3 B C A

On Japanese-based Programming

53

Table 5 Results of the experiment—working hours.

legend:

(unit: hours)

Manual studying hours

Subject Total hours

Programming/debugging hours

(a) working hours by language and by problem

Mind Syo-syusin Nihongo AFL Total

Prob. 1 A 3.5 ;'5 B 13.5 g_s c 7 § 2% :;
Prob. 2 c 3 ; A 3 :2 B 5.5 ;5 1.5 2'5
Prob. 3 B 1.5 g.s c 45 ;'5 A 3) 19 12::
Total 18 ‘g 21 :(1) 15.5 805 54.5 ;;5

(b) total working hours by subject
Subject A B c
Total 9.5 2'5 30.5 i?.s 14.5 13'5

5.3 Experiment Design

Our experiment is composed of three problems, three
languages and three subjects. Exhaustive combination
will make 27 cases, but it will not bring significant
results because the order of assignment will strongly
affect the result owing to learning effects.

Thus, we designed the experiment to let each subject
write three programs, each in a different language. See
Table 4 for actual assignments.

5.4 Results

Measured data of this experiment are working hours
for each task, size of programs (in number of lines of
code), and numbers of errors for each program. Since
the sample size is too small to give significant statistical
analysis, following results should be interpreted with
care.

(1) Working hours

We collected data of hours spent for studying each
language through reading manuals and for developing
programs (problem analysis, programming, and debegg-
ing) by subject and by program. Table 5 shows the
results.

The results indicate the following trends.

—Time for learning is generally very short.

—Time considerably varies by subject.

—There is no significant differences of time between the
three languages.

(2) Program size

The number of program lines is certainly not a
perfect measure for evaluating size but still it is a most
convenient measure especially in comparing program

Table 6 Result of the experiment—program size (unit: lines of code).
(a) program size by language and by problem

Mind Syo-syusin Ni:grigo Total
Prob. 1 A 84 B 51 C 65 200
Prob. 2 C 37 A 38 B 65 140
Prob. 3 B 54 C 44 A 32 130
Total 175 133 162 470

(b) total program size by subject

Subject A B C
Total 154 170 146

size over different languages. The results are shown in
Table 6.

There are few particularly interesting findings but the
followings can be observed.
—Problem 1 is significantly larger than the others.
—Comparing productivity defined by a number of lines
divided by developing hours, Problem 1 and Problem 3
show similar values (15.4 and 15.3), but the value for
Problem 2 is much larger (23.3). It implies that Problem
2 has a simple logical structure.
—There is no significant difference by subjects.
—Syo-syusin seems to produce more concise programs
than the other two.
(3) Errors

We counted program errors discovered by inspection.
There probably remain more errors undetected. Actual-
ly, in the case of Mind programs, new bugs were found
in the programs when they were executed on a com-

54

T. TAMAI

Table 7 Results of the experiment—number of errors.

legend:
Major errors

Total errors ———

Minor errors

(@) number of errors by language and by problem

Nihongo AFL Total

Mind Syo-syusin
1 4 0 5
Prob. 1 A 2) B 9 C 0 11
@ 1 5 0 6
3)
0 0 0 0
Prob. 2 C 1 © A 3 B 2 6
) 1 3 2 6
3 o
1 0 0 1
Prob. 3 B 4 © c 0 A 1 5
) 3 0 1 4
) -
2 4 0 6
Total 7 M 12 3 22
5 8 3 16

a2 an

note) all errors were detected by manual inspection except Mind, for which numbers in () show additional errors found by execution.

(b) total number of errors by subject

Subject A B C
1 5 0
Total 6 p 15 10 ! 1
puter. because the sample size is small. Observations obtained

Numbers of errors are shown in Table 7. We
distinguished major errors and minor errors but the
distinction was somewhat arbitrary.

The results can be summarized as follows.
—Difference by subjects turned out to be the greatest.
—Errors found by running the Mind programs suggest
that there are considerable errors not found by inspec-
tion. They include the cases where errors are caused by
ambiguous or imprecise descriptions in the manual.
—Comparing errors by language, Nihongo AFL pro-
grams have the fewest errors. This can be explained at
least partly by: 1) the subject B, who produced the
largest number of errors, was assigned problem 2 for
Nihongo AFL but that problem is the easiest among the
three; 2) the description of the language specification
given in its manual is rather too simple and sometimes it
is difficult to judge if certain expressions are correct or
not.

6. Discussions
6.1 Current Status of Japanese Programming

The quantitative results of the experiment described
in the previous section should be considered with care

from the analysis of error causes and comments given
by the subjects during the process of programming as
well as reviewing the programs may be more important
in clarifying characteristics of each language and advan-
tages/disadvantages of Japanese programming in
general.

General conclusions are as follows.

(1) Definite advantages of Japanese programming
were recognized, i.e.:

a) natural naming of variables and modules are
possible;

b) it is easy to read and understand programs writ-
ten by others;

¢) it is relatively easy to learn.

These were not proved statistically but the fact that
all the subjects, who had been rather suspisious about
the significance of Japanese programming, actually en-
joyed their programming experience seems to indicate
its usefulness well.

(2) Some problems were observed in the current
Japanese programming language design:

a) More concise expressions are desirable for
writing logically complicated algorithms and
mathematical formula.

b) Some of the current languages attempt to sup-

On Japanese-based Programming

port the concept of software components reuse through
increasing vocabulary of ‘‘words’’ (modules), but there
remains a lot to be improved especially from the aspects
of module independence and the interface for retrieval.

¢) One of the key factors for enhancing Japanese-
likeness is natural usage of particles (‘‘joshi”’). If design-
ed properly, particles will allow relatively flexible word
sequence. A related problem is word punctuation.
Japanese are normally written without any space be-
tween words. It may not be appropriate to eliminate
spaces between words entirely from programs but what
should be the units for chunking is yet to be explored.
Certainly, a particle should be glued to a noun or noun
phrases, but there remain many other factors to be con-
sidered.

d) More efforts should be made to decrease input
load, e.g. abbreviation of keywords and user-defined
identifiers (some kind of abbreviation is adopted in
Mind).

6.2 Language Design Issues

The discussions above suggest that the following
issues should be tackled in the future Japanese-based
programming language design.

(1) Fundamental language specifications

Solutions must be explored to determine what are
good design principles for language constructs such as:

(a) notation, e.g. way of punctuation and proper
use of alphanumeric, katakana, hiragana, kanji, and
special symbols.

(b) basic language elements, e.g. particles, relation
between predicate type elements like procedures and
functions and noun type elements like variables and
data, and word order.

(c) syntax and functions for complex programming
constructs, e€.g. formula, control structures (repetitive
and conditional), and modules.

(2) New programming concepts such as object-
oriented programming

The idea of constructing software component library
can be interpreted as accumulating vocabulary in the
context of Japanese-based programming. Since this
idea fits well to the object-oriented concept, it should be
worth trying to design Japanese-based programming
language based on object-oriented principle (SPPM be-
ing developed by Morimoto et al [18] is one example of
exploring this approach).

(3) Natural language processing

Natural language processing techniques are indispen-
sable for making expressions closer to natural
Japanese. There are already some research works that
applied natural language processing technology of Al
to specification writing system. It must be a long way to
realize communication with computers in a really
natural human language but technologies developed in
the natural language processing research community
should be introduced into specification and programm-
ing language design step by step.

55

(4) Automatic programming

Many of the existing Japanese-based specification
languages set as their final goal the generation of pro-
grams from specifications written in those languages. It
is none other than the objective of automatic programm-
ing and thus it must be worthwhile to review the
research of automatic programming from the stand-
point of Japanese programming.

Acknowledgements

This paper is based on the research work sponsored
by Mechanical and Social Systems Foundation [12],
[28].

The author firstly thanks Iwao Kokubo and Kyoko
Makino of Mitsubishi Research Institute, Inc., who col-
laborated in this project. He would also like to thank to
those pioneers of Japanese-based language or system
development, who accepted our interviews for this pro-
ject, including Nobumasa Takahashi, Izumi Kimura,
Shizuo Mizutani, Kenichi Ueda, Jun Sugano, Akira
Katagiri, Tsutomu Shiino, Yoshio Mouri, Kenji
Sugiyama, Masaaki Shimazaki, Masahiro Udo, and
many others.

References

1. CHIGIRA, E., NagamaTsu, Y. and KoBayasHi, M. Software
Development by Reusing System Development Specifications,
Hitachi-Hyouron, 69, 3 (1987) 249-254, in Japanese.

2. Fujitsu Ltd. YPS (YAC II Programming System), a pamphlet by
Fujitsu, in Japanese.

3. Gvouroku, 1., Doi, H., Suzukl, Y. and UEHARA, K. A Method
for Analyzing Specifications Used in the Programming Generation
System SAGE, Proc. 35th National Conf. IPS Japan (1987), 1003-
1004, in Japanese.

4. HarapA, M. and SINOHARA, Y. A Program Generator
ARIES/1—By Automatic Fabrication of Reusable Program Com-
ponents—, J. IPS Japan 27, 4 (1986) 417-424, in Japanese.

5. HEemborN, G. E. Automatic Programming Through Natural
Language Dialogue: A Survey, IBM J. Res. Develop., 20, 4 (1976)
302-313.

6. Iwamorto, K., NisHITANI, Y. and WADA, T. Automatic Program
Generation System, NEC Gihou, 40, 1 (1987) 35-38, in Japanese.
7. KATAGIRI, A. Japanese Programming Language: Mind, Opera-
tion Manual, Micro Software Associates (1987), in Japanese.

8. KaTaGIRl, A. and MAaEzoNo, Y. Japanese Programming
Language: Mind, Programming Manual, Micro Software Associates
(1987), in Japanese.

9. KAaTAGIRl, A. and MAaEzoNo, Y. Japanese Programming
Language: Mind, Library Programming Manual, Micro Software
Associates (1987), in Japanese.

10. KIMURA, S. Japanese Program, Proc. Ist National Conf. JSAI,
(1987), 465-468, in Japanese.

11. Matsushita Giken Co., Ltd. Nihongo AFL Users’ Guide (1983),
in Japanese.

12. Mechanical and Social Systems Foundation Survey Report on
Japanese Programming (1988), in Japanese.

13. MiLLER, L. A. Natural Language Programming: Styles,
Strategies and Contrasts, /BM Syst. J., 20, 2 (1981) 184-215.

14. Minami, T., SuGio, T., TAKEUCHI, A. and SHuNO, T. A
Japanese-based Specification Description Language NBSG, JPSJ
WG Softw. Eng. (WGSW), 30, 2 (1983), in Japanese.

15. MizuTtani, S. Design Principles of a Programming Language
“‘Syo-syusin’’, IPSJ WG Prog. Lang. (WGPL), 5, 3 (1986), in
Japanese.

16. Mizurani, S. Syo-syusin—Language Specifications, Tokyo
Women’s College (1986), in Japanese.

17. Mizutani, S. A Programming Language Syo-syusin Users’
Guide, Tokyo Women’s College (1986), in Japanese.

56

18. MOoRIMOTO, Y., OYANAGI, S. and NAKAYAMA, Y. Japanese
Language Programming with Accumulating a Vocabulary, Proc.
IEEE COMPSAC’87 (1987), 586-591.

19. Murakami, N. et al., YAC II Editor, in Structured Editor,
Kyoritsu Shuppan (1987), 135-146, in Japanese.

20. OHNIsHI, J., AGUsA, K. and OHNo, Y. Requirements Frame for
Requirements Definition, J. IPS Japan, 28, 4 (1987) 367-375, in
Japanese.

21. SHiNo, T., TAKEUCHI, A. and Sucio, T. NBSG: A Specification
Description Language Based on Japanese, Proc. 26th National Conf.
IPS Japan (1983), 547-548, in Japanese.

22. SUGANO, J., HONDA, K., OKAMURA, Y. and UEDA, K. Nihongo
AFL that Improves Man-machine Interface Using Natural Language,
Proc. IPSJ Symposium on Computer Human Interface (1983), 53-60,
in Japanese.

23. Sucano, J. and Uepa, K. Nihongo AFL, in Wordprocessors
and Japanese Language Processing, Kyoritsu Shuppan (1985), 243-
251, in Japanese.

24. Sugio, T., TAKEUCHI, A. and SH1INO, T. Procedural Description
in NBSG, a Specification Description Language Based on Japanese,
IPSJ WG Softw. Eng. (WGSE), 34, 13 (1984), in Japanese.

25. Suciyama, K., Akivama, K., KAMEDA, M. and MAKINOUCHI,
A. An Experimental Interactive Natural Language Programming
System, Trans. IEICE, J67-D (1984), 297-304.

26. SucGiYaMa, K., KAMEDA, M., AkiYaMA, K. and MAKINOUCHI,
A. Understanding of Japanese in an Interactive Programming
System, Proc. 10th Int. Conf. Comp. Ling. (1984), 385-388.

27. Swvzukl, Y., Doi, H., GYOHTOKU, T. and UEHARA, K. A Method
of Understanding Specification in the Program Generation System
SAGE, Proc. 35th National Conf. IPS Japan (1987), 1005-1006, in
Japanese.

28. Tamal, T., Kokuso, I. and MakiNo, K. An Experiment and
Analysis of Japanese Based Programming, Proc. 5th Conf. JSSST
(1988), 81-84, in Japanese.

29. Tovopa, J. and UEHARA, K. Automatic Program Synthesis
based on Natural Language Understanding, J. JSAZ, 2, 3 (1987) 289-
298, in Japanese.

30. UEHARA, K., Fui, K. and ToYoDA, J. A Technique for Prolog
Program Synthesis from Natural Language Specification, Computer
Software, 3, 4 (1986) 55-64, in Japanese.

(Received May 11, 1989)

