
Support for Maintaining Distributed Component-based Systems

Xuefen Fang
SRA Key Technology Laboratory, Inc. &
Dept. of Graphics and Computer Science

Graduate School of Arts and Sciences
The University of Tokyo

fang@graco.c.u-tokyo.ac.jp

Tetsuo Tamai
Dept. of Graphics and Computer Science

Graduate School of Arts and Sciences
The University of Tokyo

tamai@graco.c.u-tokyo.ac.jp

ABSTRACT
Legacy systems are subject to successive changes through-
out their working lives, which diminish their understandabil-
ity. No popular system can escape the fate of becoming
a legacy in this sense, as its age advances. Relatively re-
cently, distributed component-based application systems are
getting more and more in service, and we regard it impor-
tant to prepare for their future when they start to show the
typical malaise as legacies. A distributed component-based
system is typically constructed by implementing a compo-
nent that encapsulates an application logic, and by making
it run with existing components in a pre-defined execution
environment. Developed under a tight schedule, with a high
employee turnover, and in a rapidly evolving environment,
such a system is hard to maintain from the very beginning.

This paper surveys the architecture views proposed for main-
tenance works, and presents an approach to reconstruct such
views of distributed component-based systems. Our approach
is applicable to various technologies used in developing those
systems. In this approach, concrete structures of distributed
component-based systems are extracted from conceptual com-
ponents, and interactions between various components, such
as distributed objects and databases, are shown.

Keywords
system undesrstanding, architecture reconstruction, mainte-
nance, distributed component-based system

Introduction
A distributed component-based application is a software sys-
tem whose functionality is delivered through Internet ser-
vices of various servers, such as web servers and applica-
tion servsers. With the advent of the Internet, web technolo-
gies, and component technologies, many applications are no
longer developed using traditional client/server technologies.
They are developed, instead, with web browsers, web servers,
and application servers. Their functionality is implemented
through user interfaces, distributed component objects, and
databases. The interactions between them are important to
software developers when they have to maintain or enhance
those applications.

Our objective is to ease this maintenance task, and this pa-
per strives to achieve this goal in two ways. Firstly, it gives

a survey of software architectures that are particularly rele-
vant to understanding distributed component-based systems.
Secondly, the paper presents an approach for reconstructing
the architectures of such systems. In this approach, struc-
tures of distributed component-based systems are extracted
from conceptual components, and interactions between var-
ious components, such as distributed objects and databases,
are shown.

The reconstructing process uses a set of specialized extrac-
tors and a dynamic tracer. The extractors analyzes the re-
sources of applications. The tracer derives information on
systems’ execution. The data obtained by the extractors and
the tracer can be shown in individual diagrams, or can be
merged to generate architecture diagrams. In order to re-
duce the complexity of the architecture diagrams, a cluster-
ing technique is used. These diagrams help developers gain a
better understanding of applications, which ease their main-
tenance works.

The rest of the paper is organized as follows. Section 2 de-
scribes the architecture views that are needed to by develop-
ers to gain a better understanding of distributed component-
based applications. Section 3 describes our architecture re-
constructing approach for distributed component-based ap-
plications. Section 4 presents a case study on the E-Process
system and its reconstructed architecture. Finally, Section 5
draws conclusions from this work.

Architecture Views for Maintenance
Software system mainteance and enhancement require a well-
understool architecture, especially if the system is large and
complex[7]. Traditional approaches[8, 9, 5] are mostly based
on functional definitions, function references, variable defi-
nitions, and variable uses. This level of granularity is not
appropriate to distributed component-based application sys-
tems. Usually, such a system is composed of separable, in-
teraction components, where major pieces of the system are
not under the control of the source code. Required here are
architectures at the component level.

In our previous analytical work on software architectures for
understanding distributed component-based systems[4], we
have found four kinds of relevant architecture views. Each
of the four architecture views addresses different engineer-

Presentation
 Tier

Business
 Tier

Business
delegates

Session
Beans

Entity
Beans

Data
Access
Object

Database

Resource
Tier

Web Browser Web Server Application
Server

Database
Server

Servlets

JSP

Applets

Interaction Control
Tier

HTTP JDBC
RMI-IIOP
JNDI

Figure 1: Conceptual Architecture View

ing concerns.
Conceptual Architecture View
A conceptual architecture view consists of conceptual com-
ponents linked together to deliver the functionality of the ap-
plication. In a distributed component-based system, there are
explicit conceptual views. This view is usually tied closely
to the infrastructure model. Dependent on the conceptual
view, we can specify the software basic architecture of a
system. For example, general distributed component-based
systems can be described as in Figure 1. Here the concep-
tual components are distributed components, such as JSPs,
Servlets, EJBs and Databases, which are distributed on dif-
ferent layers, play different roles, and are supported by dif-
ferent servers.
Code Architecture View
A code architecture view describes how the software imple-
menting the system is organized. In this view, individual el-
ements are abstracted from source components and deploy-
ment components (for example, libraries and configuration
files).
Execution Architecture View
An execution architecture view describes the control flow
from the point of view of the runtime platform. This view
helps the developers to understand the following concerns.

• How does the system meet its performance requirements?
• What are the impacts of a change in the runtime platform?

As systems are distributed, the developers need to understand
how functional components map to runtime entities, and how
communication, coordination, and synchronization are han-
dled.
Component Architecture View
A component architecture view is used to make explicit how
the functionality is mapped to the components. All the re-
lationship among the implementing components must be ex-
plicit, including how the system uses the underlying software
platform (system services). Specifically, it shows compo-
nents and organizes them into layers. In general, component
architecture view can help the developers to understand the
following concerns.

• What component is mapped to which server?
• What support/services does a component use?
• What dependencies between components exist?

As a whole, this architecture view provides an understand-
ing plan for a system at a high level of abstraction. Indi-
vidual functions and components are not described in detail;
instead, relations between them are emphasized. This level
of abstraction is appropriate for understanding the entire soft-
ware system.

Unfortunately the architecture documentation associated with
an application does not commonly exist and, even when it
does, is rarely complete or up-to-date. In order to support
better maintenance we need to reconstruct the architecture
views.

Reconstructing Architecture Views
In distributed component-based systems, component instances
are implemented in various programming languages, are loaded
to different component environments, and run on multiple
hosts distributed across the network. For this reason it is
impossible to reconstruct the architecture views uniformly
and/or fully automatically. We therefore propose a semi-
automated approach. Figure 2 shows the steps involved in
abstracting out the architecture views.

Conceptual
Architecture

Architecture Viewers

Clustering
Merging

Fact
Repository

Static
Extractor

Dynamic
Tracer

System
Resources

Figure 2: Reconstruct Approach for Views

This is a semi-automated approach. The conceptual archi-
tecture view is obtained manually from documents, the users’
guidance, and interviews of experts. The facts extracted from
the conceptual view constitute the basic framework structure:
layers, functional modules, conceptual components, and com-
munication protocols used between the layers. These facts

employed by the (automatic) extractor tools.

Extractors for EJB-based application
Distributed component-based applications are developed us-
ing various component models. From now on we will con-
centrate on one major model — that of Enterprise JavaBeans
(EJB)[10] — to illustrate our approach. A variety of lan-
guages are used in developing distributed component-based
applications. To deal with this situation, we developed three
static extractors and and a dynamic execution tracer, as fol-
lows.

• JSP extractor
• XML extractor
• Java Source Code extractor
• Execution Tracer

Reconstructing Process
A reconstructing process depends on the above extractors.
Each extractor generates different type of data. The extrac-
tors abstract out facts about components, relations, and at-
tributes of a software system.

JSP
Extractor

JSP page

JSP facts

XML descriptor

DataBase
facts

 XML
 Extractor

Java
Extractor

 Java
 Source Code

Source Code
Facts

Executing
of System

Tracing
Logging

Executing
Facts

+ + +

JSPviewer DBViewer SourceViewer Dynamic
 Viewer

Module
Architecture
Viewer

Figure 3: Extraction Process

The reconstructing process for EJB-based applications is pre-
sented in Figure 3. Extracted facts could be as detailed as
correspondence of EJB entities and database tables, access
of EJB entities and servlet components, client objects and
JSP objects. The level of detail depends on the analysis to be
performed. JSPViewer, DBViewer, SourceViewer, and Dy-
namicViewer are used to show individual structures.

Architecture Views
According to the level of abstraction, we may organize the
four architecture views as in Figure 4. The component ar-

Conceptual Architecture View

Module Architecture View

Code View Execution View

Conceptual Abstract

Concrete Abstract

Concrete Aspects

Figure 4: Relationships of Views

chitecture view is the central view for maintenance purposes.
All the views are displayed in diagrams, using graphviz[2]

toolkits. As can easily be imagined, if we use a single dia-
gram for a large system, it is hard to comprehend. To cope
with this problem of size, we employ a clustering tool that
deals with containment relations and information hiding.

Case Study: Reconstructing E-process
Architecture Views

System
Mgr.

Project
 Mgr.

Process
 Mem.

Process
 Eng.

Component
Management
Tool

User
Interface
of

Process
Modeling
Tool

Process
Enaction
Tool

Process
 Leade

A
cce

ss M
a
n
a
ge
r

Process
Editor

Process
Analyzer

Process
Enactor

Process
Monitor

Project
Measurer

Agent
Manager

Process
Component

Process
Model

Process
Enacting
 Data lib

Measurement
History

Resource

Process
Measurement
Tool

Process
Monitor
Tool

Resource
Management
Tool

Access
Control
Center

Figure 5: E-Process Conceptual Architecture View

E-Process is a software process support system based on a
multi-tier distributed EJB component model[3]. The system
has over 700 files and five databases. It consists of seven sub-
systems and delivered on Tomcat and Jboss[6] server. The
space restriction does not allow us to present all the archi-
tecture views of such a large system. We instead illustrate
our approach in terms of an E-Process subsystem called Ac-
cessTool.

As shown in Figure 3, we employ the extractor tools and a
dynamic tracer to abstract out E-Process resources. Each
extractor parses a relevant type of components to generate
appropriate facts. These facts are then gathered to produce a
concrete abstract view (that is, component architecture view).

Tools Prototyping
We developed a set of extracting and display tools.
JSP Extractor
A single JSP file may contain multiple sections written in
HTML, Script, and Java codes. In implementing our lightweight
(not light-hearted!) extractor, we decided to extract only the
entities we are directly interested in, using partial grammar
rules for the interesting entities. Figure 11 shows the ex-

tracted code view of JSP.
XML Extractor
A Web and EBJ-based application contains various deploy-
ment descriptors in XML that contain information about the
JSP pages, servlets, EJBs and databases used in the applica-
tion. We implemented an XML parser to extract the facts.
As an example, Figure 12 shows the extracted code view of
XML for EJB and database tables invoked by AccessTool.
Java Source Code Extractor
Instead of implementing a complete parser, we scan the con-
nection descriptions among the distributed objects. Distributed
objects communicate via protocols. Therefore, we use spe-
cific protocols to extract possible connections. For instance,
Figure 13 shows the interrelations between servlet objects
and EJB objects.
Execution Tracer
We implemented the dynamic tracer using AspectJ[1]. Fig-
ure 14 show the part of the control translation of objects.
Display Tools
Extracted and abstracted data are displayed by diagrams, where

• ellipses represent execution components,
• rectangular boxes represent functional modules,
• multi-peripheric boxes represent abstracted components,
• octagons represent EJB entities, and
• arrows represent some connections, including control flows.

Architecture Views of E-Process
The Architecture views of E-Process are generated. Concep-
tual Architecture View
The conceptual architecture view describes the system in terms
of its major components and relationship among them. The
E-Process’s conceptual view is documented explicitly[3]. This
view is informally described in Figure 5. The rounded boxes
represent layers while the angular ones represent functional
components. The arrows represent connectors (data access
and protocols). Connectors can be further detailed in terms
of protocols, as in Figure 6. The layers, components and pro-
tocols are facts which contribute to the concrete component
view.

Web Browser Web Server

Application
Server Database

Server

HTTP

JDBC

RMI-IIOP
JNDI

Figure 6: Employed Protocols

Examples of Code Architecture View
A code architecture view not only show the program resource
but also shows the binary configuration information. Some
example program code views are shown in Figure 12 and
Figure 13. The binary configuration is shown in Figure 7.
A Example of Execution Architecture View
A example of execution view is shown in Figure 14, The
transformations among part of objects of AccessTool are shown.

The Component Architecture View
The component architecture view is reconstructed using the
code and execution views described above. In order to ab-
stract out the concrete component architecture view, we in-
troduced a metamodel, as shown in Figure 8. Using the meta-

tiercomponent
assign to

* 0..1

use

*

*

connection

0..1

0..1

Figure 8: Meta model of component view

model we lifted the component to the layer level.the Figure
9 shows E-Process system component structure.

Applying Architecture Views
We gained better understanding of E-Process with abstracted
architecture views.In our case study, the most important role
of the architecture views is to support making decisions on
modification of system precisely. For example, E-Process
is a aggregable tool environment, but in practice, there is a
requirement that is to decompose the E-Process into some
tools according to software process activities. Depending
upon the component architecture view,we can easily distin-
guish relative components and organise them into the new
tool.The stand-alone System Management Tool(SMT) can be
abstracted as Figure 10 based on E-Process component ar-
chitecture view. It suggests that we can easily decompose

clients

servlets

ejbmodule

eprocessDB

SMT

Access Resource

access resource

accessresourcecommonmonitor

resource sessionpenaction pmodel

EpResourceDB

epRmt+
epAcc+

common

EpEnactionDB

 cm+

EpModelDB

 pm+

EpMhistoryDB

 se+

Figure 10: Component Architecture View of SMT

components on client layer.

Conclusions
Developers have to comprehend many aspects of a system.
Some of them are static, while others are dynamic. This pa-
per has shown an approach for providing integrated represen-
tation of many of those aspects, based on four architecture
views. According to our observation of practitioners, these
four views are indeed effective in understanding systems. In
fact, when they want to understand a system, the first thing
they will do is to reconstruct these views from that system.

Configuration

Jboss::deploy Tomcat::wepapps

deploy.txt eprocess.ear eprocess

WEB-INF app css docs help images jspcommonc.jar component.jar pmodel.jar resource.jar penaction.jar mhistory.jar session.jar

Figure 7: Code Architecture View:Binary Configuration

UserInterface

clients

servlets

ejbmodule

eprocessDB

eprocess

AccessComponentEnactmentMeasurementModelingMonitorResource

accesscomponentenactmentmeasurementpmtmonitorresource

accessresource commonmonitor componentenactmeasuremodeling

resource sessionpenactionpmodel componentmhistory

EpResourceDB

epRmt+
epAcc+

common

EpMhistoryDB

 cmUniqueKey

EpComponentDB

 cm+

EpEnactionDB

 pe+

EpModelDB

 pm+
 se+

 pms+

Figure 9: Component Architecture View

In our study so far, the following goals are achieved. On the
one hand, we separated different engineering concerns into
separate views, to mitigate the complexity of understanding
large and complex systems. On the other hand, we showed
a semi-automatic approach to extracting architectural docu-
mentation from an implemented system.

In the future we want to validate our approach by applying it
to various systems and developers.

Acknowledgment

We would very much like to thank Kouichi Kishida, Yoshi-
taka Matsumura and SRA Key Technology Lab. for their
support of this research. We also thank colleagues specifi-
cally Kazunori Shioya and Ataru Nakagawa for their valu-
ables suggestions.

REFERENCES
1. Aspectj Team. Aspect-Oriented Programming with Java: As-

pectj.
http://aspectj. org/.

2. AT&T Research. Graph Visualization Project.
http://www. graphviz.org/.

3. E-Process Team. E-Process Design Documentations. SRA
and ASTI, 2001.

4. X. Fang and T. Tamai. Abstracting architecture of distributed
system for system understanding. Research Report of Soft-
ware Engineering in IPSJ,In Japanese, 137(4), 2002.

5. P. J. Finnigan, R. C. Holt, I. Kalas, S. Kerr, H. A. M. K. Kon-
togiannis, J. Mylopoulos, S. G. Perelgut, M. Stanley, and
K. Wong. The software bookshelf. In IBM Systems Journal,
number 36 in 4, pages 564–593, October 1997.

6. JBoss.org. JBoss.
http://www.jboss.org/, 1999-2002.

7. R. Krikhaar. Software architecture reconstruction. Ph. D.
Thesis University of Amsterdam, Amsterdam, The Nether-
lands, 1999.

8. SRA Inc. . Total Computer Aided Reengineering Environ-
ment.
http://www.sra.co.jp/TCARE/, 1998.

9. SRA Inc. . VisualBasic Reference Tracking.
http://www.sra.co.jp/reftrack/, 2000.

10. Sun MicroSystems. EJB Specification.
http://java.sun.com/j2ee/, 2001.

jsp

access.jsp component.jsp enactment.jsp error.jsp help.jsp index.jsp logon.jsp measurement.jsp monitor.jsp pmt.jsp resource.jsp

EpAccessTool EpCMT EpEnactTasks EpLogon EpPms EpPmn EpPMT EpResourceManagement

Figure 11: JSP Code View

EpResourceDB

DB

EpResourceDB

agentunitprivilegeagent_special_privilegeagent_positionposition_privilegeposition_informationdelegate

epRmtAgent
ejbName

epRmtUnit
ejbName

epAccPrivilege
ejbName

epAccSpecialPrivilege
ejbName

epAccAgentPosition

ejbName

epAccPositionPrivilege

ejbName

epAccPositionInfo

ejbName

epAccDelegate

ejbName

Figure 12: Code Architecture View: EJB Entities and Tables of Database

ejbuse

servlet

accesscommon modelingresource

epChangePasswordServlet.java epGetAccessInformationServlet.javaepLogonServlet.javaepCheckSessionBean.java epGetAgentsBriefServlet.javaepVersionManagerBean.java epModelGetAuthorityBean.javaepIsSystemManagerServlet.java

epAccAgentPosition

EpResourceDB

seSessionManagerseUserSession

EpMhistoryDB

epRmtAgent epAccPositionInfo epAccSpecialPrivilege epAccPrivilegeepAccDelegate pmProject

EpModelDB

Figure 13: Code View: Servlet objects and EJB objects

EpAccessTool 1ializing 8:start

EpAccessBridge

2

EpAccessConfirm

9:setCommonMenu

7:getAgentBrief

3:getInstance 4 5:getInitial 6:getCurrentUserId

EpAccessPasswordPanel

11:getInstance

EpAccessDelegate

17:getInstance

EpAccessMyList

25:getInstance41:searchList 172:setPassword 203:sendAssignment

EpAccessCustomization

69:getInstance

EpAccessSystemAssignment

73:getInstance

EpAccessSpecialGrant

107:getInstance

10

249:jump

16:setInitial 171:passwordSame

15 170:butonOK_actionPerformed

21

20

43:comboDelegate_itemStateChanged

28 192:listAll_valueChanged

203:sendAssignment 13842:equals

27 44:equals 138

45:equals

172:setPassword

68:setInitial

67

70

72:setInitial

192:listAll_valueChanged

71

103

106:setInitial

134

105

Figure 14: Execution View: Object Transformation in AccessTool

