
Software Lifetime and its Evolution Process over Generations

Tetsuo Tamai Yohsuke Torimitsu

Graduate School of Systems Management Systems Division
The University of Tsukuba, Tokyo Nippon Oil Information Systems Corporation

Tokyo 112, Japan Tokyo 105, Japan

Abstract

Software evolution process does not end at the death of

an individual software system but usually continues its evo-

lution over generations through being replaced by newly

built software. To explore this research topic, we conducted

a survey collecting data of software lifetimes, replacement

practices and factors of replacement.

In this paper, we report the results of the survey and

discuss some possible long range strategies for software

life cycle planning and control based on our findings.

1 Introduction

Nobody denies every software system is mortal. How-

ever, there has scarcely been any data of the distribution of

software lifetimes and causes of their deaths or literature

discussing the significance of such knowledge and how to

exploit it.

The distinguished work by Belady and Lehman on soft-

ware evolution dynamics [3, 7] is well known and still

frequently quoted. Owing to their study, it is now our

common knowledge that software keeps on functionally

evolving but structurally deteriorating, which eventually

terminates life of software. It is usually concluded from

this observation that efforts of preserving design structure

and curbing system complexity growth (or entropy growth)

should be given high priority in the maintenance phase.

The assumption behind this principle is that the longer soft-

ware lives, the better.

This might be one of the reasons that there has been

little interest in collecting real data of software lifetime,

although there was some argument calling attention to the

importance of such statistics [5]. The survey by Lientz and

Swanson [8] and similar other studies collected data of the

ages of programs but they are the current ages of covered

existing software systems rather than total life lengths of

those systems.

We note that causes of software death is not restricted

to structural deterioration. Change of hardware, operating

systems and other execution environments can be a fatal

cause. Considerable addition or radical change of users’

requirements is clearly another critical factor. These events

may induce the decision of throwing away the existing soft-

ware and rebuilding or purchasing new software for re-

placement, be the current software system structurally de-

teriorated or not, which implies that longevity of software

is not necessarily an essential property of good software.

Sometimes, a software system is not replaced but just

abandoned and ceases to be used. Practically, such cases

are not so interesting. What is more important is the case

such that a software system once gets life, lives and finally

dies but then revives. This long range process of software

evolution over generations has not been given enough at-

tention. We try to explore this process based on the concept

of software lifetime, which is a span of software life for one

generation but its role is succeeded by the next generation

and so the evolutional process, as a species, continues over

generations.

In the following, we report the results of the survey con-

ducted to explore the current status of software lifetime and

evolution process and discuss some possible long range

strategies for software life cycle planning and control based

on our findings.



2 Background
2.1 Objectives of Survey

We planned to conduct a survey on software lifetime

and replacement. Our target software field is business ap-

plications, in contrast to Belady and Lehman’s study and

other similar works treating system software. A system

software such as OS/360 studied by Belady and Lehman

keeps on growing by version-up but rarely reconstructed

as a whole. By contrast, it is not unusual to see an applica-

tion system totally replaced by a newly constructed system

after being maintained over a period of years.

In our survey, we defined a software lifetime as a period

of time since the birth of a software system when it is sup-

plied for usage until its death when it ceases to be used and

is abandoned, but particularly focused on the case when

the death is followed by replacement. Thus, lifetime of a

software system is a property of one generation but so long

as its demand of usage exists, it will repeat generations.

Replacement is realized by reconstruction or by purchas-

ing off-the-shelf software. By reconstruction, we mean an

almost total re-design and re-implementation process thus

a generation is a larger unit of time than a version in its

ordinary usage.

The objectives of the survey were:

1. to get statistics of software life length,

2. to know the state of the practice of software recon-

struction and

3. to analyze decision factors of reconstruction or almost

equally determining factors of software lifetime.

Our survey approach is cross sectional over a fair num-

ber of systems rather than historical, i.e. studying one or

few systems intensively over time.

2.2 Preliminary Survey

First, we conducted a preliminary survey in October

1991, taking information systems of the company one of

the authors belong to as the target. The survey method was

by distributing questionnaires to the personnel who are in

charge of system maintenance. The systems surveyed were

not exhaustive. Most of the systems were business applica-

tion software written in Cobol. The average software size

was about 30 KLOC (kilo lines of code).

The results can be summarized as follows.

1. There are considerable cases of software replacement.

We collected 32 cases of 27 systems (which means 5

cases are repeating replacement).

2. Average software lifetime caused by replacement is

about 9 years, the maximum 20 years and the mini-

mum 2 years.

3. Multiple factors are given for the causes of replace-

ment. Typical factors are:

� hardware replacement or change of system ar-

chitecture, e.g. change from batch to online sys-

tem, change of data entry method, installation

of page printers and Japanese text input/output

functions.

� change of business procedures or social sys-

tems, e.g. introduction of consumption tax sys-

tem, business tie-up, and other functional en-

hancement requirements.

� high maintenance cost caused by structural de-

terioration.

The results of this preliminary study convinced us of the

significance of the study and we proceeded to a survey of

wider scope.

3 Results of Survey
3.1 Overview

Our second survey was conducted in December 1991.

Questionnaires were sent to information system divisions

of 150 organizations in Japan, all mainframe users. 42 an-

swers (28 %) were returned which is a fairy good response

rate considering the questionnaire required a good amount

of work for collecting data and filling in answers.

The main requirement of the survey was to report soft-

ware replacement cases at each organization within the past

five years. The reason we limited the target period to five



years was that we expected to collect reliable data of uni-

form quality through that condition. In total, 95 valid cases

were obtained.

The difference between replacement and large scale

maintenance is subtle. In our questionnaire, we left the pre-

cise definition of replacement to the judgement of respon-

ders but gave a selection question whether the software re-

construction was “total” or “partial” and if the answer was

partial, we let them write its percentage. 54 cases (60%)

were answered as total reconstruction. In most of the “par-

tial” cases, the percentage is no less than 50 % but there

were some that gave the figure under 50%. We deleted

those data under 50% out of the following lifetime statis-

tics analysis.

Most of the respondents were system managers. The

industry sectors their companies belong to are distributed

as shown in Fig.1.

 

others(3)

agricultural/fishery associations(2)

utilities(2)

mass media(3)

construction(3)

software & information service(6)

financial(6)

manufacturing(17)

Figure 1: Industry Sectors Distribution

3.2 Findings

We summarize the findings we get from this survey un-

der three categories: software lifetime, software replace-

ment, and replacement causes (= lifetime determining fac-

tors).

3.2.1 Software Lifetime

1. Software lifetime is about 10 years on the average.

1 5 9 13 17 21 25 29
0

2

4

6

8

10

12

14

frequency

years

Figure 2: Software Lifetime Distribution

A simple average of software life span calculated over

collected 95 samples was 10.1. This is very close to

the average of the preliminary survey (8.8 years) and

also matches to our common sense (we sometimes

hear the range of 6 or 7 to 10 years). However, this

is longer than the depreciation term of software, 5

years, stipulated by the tax law of Japan. This is in

contrast to hardware as we usually see computers and

other devices being replaced before its depreciation

term ends.

2. The variance of lifetime data is large.

The distribution of software lifetime is as shown in

Fig.2. The maximum is 30 years, the minimum 2

years, and the standard deviation is 6.2. The analysis

of the causes for this variance is difficult but intrigu-

ing, which we shall partly try in the following.

3. Small scale software tends to have shorter life.

We collected two kinds of software size data, one

measured by lines of code and the other by number of

programs. Since the correlation of these two measures

is high, we only use KLOC in the following discus-

sion. The average size of all samples including sys-

tems both before and after replacement is about 700

KLOC but it ranges from 4 to 15,000 KLOC.



The lifetime and the size have a positive correlation

but very low (the correlation coefficient between the

lifetime length and the lines of code is 0.19) so that

it seems better to say they are irrelevant. However,

when we take a subset of samples consisting of size

under 100 KLOC (the number of samples = 37), its

average lifetime is 6.8, significantly shorter than the

remaining samples (see Table 1).

Table 1: Software Lifetime by Size

size(KLOC) no. of average max min std
samples (years) dev.

� ��� 37 6.8 16 2 3.6
� ���� 34 11.1 30 4 7.2
���� � 8 12.3 21 8 4.2

unknown 16 14.4 27 7 5.8

4. Administration systems live longer than business sup-

porting systems.

We classified the samples by their application areas

and took their statistics. As shown in Table 2, per-

sonnel systems and accounting systems live longer

than sales support systems and manufacturing sys-

tems. This is not surprising because administration

type applications should be relatively stable in func-

tions while business supporting type systems must be

affected by the frequent change of business environ-

ment.

Table 2: Software Lifetime by Application Area

application # samples average standard
area (years) deviation
personnel 17 12.1 7.0
accounting 16 12.1 8.8
sales support 39 8.8 4.2
manufacturing 10 8.6 6.9
others 13 10.5 5.5

5. Some companies are setting software life lengths at

the time of release and use them for life cycle man-

agement.

We asked if the responding company has a rule of

predicting or planning software lifetime when a soft-

ware system is released to the user. To this question,

12 companies (29 %) answered yes. Typical setting

length is 5 years or 10 years. Most of them are de-

termined as a milestone rather than a forecast so that

when that time approaches, the actions of checking

the system and deciding between continuous use or

replacement are triggered.

3.2.2 Replacement

6. Software size grows by replacement.

The ratio of software size after and before replace-

ment is 2.66 on the average (measured by KLOC). It

implies that replacement is usually accompanied by

functional enhancement (but the fact is not that sim-

ple as discussed in section 4.2).

Among the 76 data available of size change, only 5

cases show size reduction. In 4 out of those 5 reduc-

tion cases, high level description languages, 4GL and

the like (Natural, SAS, and YPS), are adopted in ad-

dition to or in place of Cobol.

7. Cobol is still dominant in business applications but

diversification in programming languages is also ob-

served.

Cobol is used in 70 % of the systems surveyed; its

share is almost constant before and after the replace-

ment.

In 43 cases (45 %), the language or the set of lan-

guages used is the same before and after the replace-

ment. The diversification in the languages is shown by

the data that 13 different languages are totally used in

the old systems whereas 21 languages are used in the

new systems. Most of the newcomers are so called

the fourth generation languages in a broad sense in-

cluding database languages, program generators, and



statistics manipulation systems. The number of lan-

guages of this kind increases from 3 to 12, its usage

cases from 13 to 56. They are mostly used in combi-

nation with compiler languages, typically Cobol.

Decrease of usage is seen in assemblers and report

generators.

3.2.3 Replacement Factors or Lifetime Determining
Factors

8. Factors that cause replacement are composite.

In the questionnaire, we asked to list the factors that

caused software replacement for each case. We did

not give a candidate factor list for selection but let the

responder write in freely (some examples were shown

to guide the way of description).

Almost all the responses listed more than one factor

for each replacement case. On the average, 2.7 factors

were given.

This is conceivable, because replacement requires a

large amount of investment and when compared to

investment on totally new system, its priority tends

to be set lower. Therefore, in order to justify the re-

placement decision, strong and composite reasons are

required.

9. The factor of satisfying user requirements is given as

one of the causes in more than half of replacement

cases.

We classified the factors into 8 groups as shown in

Table 3. The classification is, of course, not unique

but the table seems to show a good whole picture. We

counted 58 cases (61 %) that gave factors relating user

requirements. This factor can be subclassified into 1)

functional enhancement (52 cases), 2) business strat-

egy or environment change (13), 3) cost saving and

efficiency (8) and 4) organization or related system

change (6) � .

� As multiple factors are given for each case, the sum of these subclass
cases exceeds the total.

Table 3: Classification of Replacement Factors

No. replacement factors # cases
1 hardware replacement 22
2 change into distributed system 10
3 change into online system 39
4 handle Japanese text 14
5 enhance maintainability 22
6 adopt DBMS 19
7 integrate into larger system 17
8 satisfy user requirements 58

We may group together some of the factors above to

make larger classes as Table 4.

Table 4: Broader Classification of Replacement Factors

replacement factors # cases
(subclass numbers)
hardware & system architecture 32
change (1,2)
provide service with 42
new technology (3,4)
requirements from software 45
maintenance technology (5,6,7)
satisfy user requirements (8) 58

In the software engineering context, the factor of dete-

riorating maintainability is emphasized as a cause for

software death and replacement. It surely is an impor-

tant factor but not the greatest and is usually combined

with other factors to lead to the replacement decision.

10. Software replaced by the reason of maintainability

has a longer life.

The average lifetime of software replaced by the

factor of maintainability is 11.2 years, significantly

longer than the whole sample statistics. On the other

hand, the average lifetime ended by the user require-

ments factor is 9.8 and that by hardware change is 9.1,

considerably shorter. (The average is calculated over

the samples that have been given the corresponding

factor as at least one of the replacement causes, thus



some cases are duplicately used for these average cal-

culations.)

This may be explained as follows. In general, soft-

ware whose functions are relatively stable over time

can enjoy longer life but minor maintenance is ac-

cumulated during the life and eventually the problem

of structure deterioration and low maintainability ap-

pears. New models of hardware enter market in much

shorter interval compared with the average software

lifetime and thus such kind of software more likely

to be affected by hardware tends to be replaced in a

shorter period. Similar argument should be valid for

the user requirements factor.

4 Discussions
Findings from this survey can be the basis for forming

long range software life cycle management strategies. We

discuss some important issues for considering such strate-

gies in this section.
4.1 Management by Lifetime Characteristics

We have seen that although the factors determining soft-

ware lifetime are not simple, software properties such as

application areas, size, etc. affect the length of its life. It

might be possible to build a model that forecasts software

lifetime taking such factors for explanation variables. A

model that can be used not only for forecasting lifetime

at the time of software birth but also in the middle of its

life may be conceivable just as the demography model that

gives one’s expected remainder of life.

A mechanical statistics model may not be enough. We

had better use the list of replacement factors for forecast-

ing. For example, it is certainly a difficult task to have

a reliable prospect of future technology development in-

cluding computers, networks, peripheral devices, operat-

ing systems, and data bases but by means of technology

forecasting methodology or the like, we may succeed to a

certain degree.

Future user requirements due to business change may

also be predicted partly through the use of middle/long

range management plans and other materials. Deteriora-

tion of maintainability might be projected by the use of

software evolution dynamics model like the one proposed

by Belady and Lehman, suppose it were customized to fit

to the maintenance practice of the organization and its soft-

ware characteristics.

Let us assume that a lifetime of a given software system

can be forecast by a proper precision within some range.

Then we can exploit that knowledge in two ways.

maintenance strategy As a maintenance strategy, we can

think of two extreme ones [2]:

1. maintain software so that the structure as a

whole is kept clean as much as possible (call it

iterative enhancement following V. Basili’s ter-

minology);

2. taking patch style, execute the maintenance

work by the least possible effort (call it quick-

fix also following Basili).

The iterative enhancement strategy used to be recom-

mended as a good maintenance practice. Basili [2] in-

sisted that maintenance strategies should be selected

based on measurement but did not give definite crite-

ria. Harrison & Cook [6] proposed a method, in which

a part of program that frequently undergoes mainte-

nance and a part seldom changed are identified by

measurement and the iterative enhancement is applied

to the former, the quick-fix to the latter.

We claim that analysis of lifetime gives a good clue

to this maintenance strategy decision. The cost com-

parison between maintenance and replacement is not

easy [1, 9]. However, as we have seen in the last sec-

tion, software replacement can often be taken place

before the software gets old by maintenance. There-

fore, we have a reason to seriously consider the quick-

fix method as a viable alternative. The composite

strategy of Harrison & Cook may not be necessary;

the quick-fix strategy can be justified as a whole if the

given system must be replaced any way in a certain

period of time.

A probable strategy is, for example, if the remaining

lifetime of a system is forecast less than say 5 years,



then the quick-fix maintenance is chosen. If a sys-

tem has a large size or its targeting business area is

relatively stable, then the iterative enhancement style

should be considered.

milestone for life cycle management As some compa-

nies are already doing, prospected lifetime can be

used as a milestone for the software life cycle man-

agement. For this purpose, the forecast need not be

very precise but the concept of lifetime makes the

management more concrete in deciding the timing of

replacement and studying total investment plan.

4.2 Monotonicity of Size Growth

Belady & Lehman showed that software size almost

monotonically grows by continuous maintenance. Our

study shows that the size grows even by replacement in

much larger scale than we have expected. It may be natu-

ral if the replacement is caused by functional enhancement

but it turns out to be true even for the replacement caused

by maintainability problems; the average size growth ra-

tio of the former is 2.4 and the latter is 2.1 (but again, we

have to note that many samples overlap between these two

groups).

We think it implies that there is little serious effort of

throwing away unnecessary or redundant functions. Soft-

ware engineering has been emphasizing the importance of

requirements acquisition process but not sufficiently taking

care of “unrequirements”. Many maintenance problems

may have started from this practice. We suggest that soft-

ware management should take a measure of consciously

reducing unnecessary functions based on the concepts of

lifetime, rebirth and evolution over generations. This pol-

icy is especially important when we consider the trend of

down-sizing and distributed processing.
4.3 Reuse

We have been studying maintenance problem focusing

on software replacement process. A major problem of re-

placement strategy is its cost. Actually, several respon-

ders reported cases where replacement was considered but

eventually given up and the reason in most cases was cost

unjustified.

As pointed out by Basili [2], software reuse can be a

key factor for reducing replacement cost. In case of re-

placement, we need not prepare a general purpose soft-

ware component library and we can technically focus on

the reuse method in a restricted target domain. The consid-

eration of lifetime suggests that when we develop software

whose prospected life is short, we should take specific care

about the reusability of its components.

Additionally, we would like to note that software re-

placement can bring other benefits like opportunities of in-

troducing new technologies and educating inexperienced

engineers, which are difficult to evaluate in terms of

cost/benefit.

Conclusion We conducted a survey of software lifetime

and replacement process and found a number of interesting

facts. As far as we know, this kind of data has hardly been

collected but we believe effective software evolution strate-

gies can be formed upon the knowledge obtained from this

kind of data.

References

[1] Barua, A. and Mukhopadhyay, T.: A Cost Analysis

of the Software Dilemma: To Maintain or to Replace,

Proc. 22nd Annual Hawaii International Conference

on System Sciences Vol. III, IEEE, 1989, pp. 89–98.

[2] Basili, V. R.: Viewing Maintenance as Reuse-

Oriented Software Development, IEEE Software,

January 1990, pp. 19–25.

[3] Belady, L. A. and Lehman, M. M.: A Model of Large

Program Development, IBM Systems Journal, Vol.

15, No. 3 (1976), pp. 225–252.

[4] Brown, P. J.: Why does Software Die?, Proc. 67th In-

fotech State of the Art Conference, London, Decem-

ber 1979.

[5] Foster, J.: Program Lifetime: A Vital Statistic for

Maintenance, Proc. Conference on Software Mainte-

nance 1991, IEEE, 1991, pp. 98–103.



[6] Harrison, W. and Cook, C.: Insights on Improving

the Maintenance Process through Software Measure-

ment, Proc. Conference on Software Maintenance

1990, IEEE, 1990, pp. 37–45.

[7] Lehman, M. M.; On Understanding Laws, Evolution

and Conservation in the Large Program Life-Cycle,

Proc. 67th Infotech State of the Art Conference, Lon-

don, December 1979.

[8] Lientz, B. P. and Swanson, E. B.: Software Mainte-

nance Management, Addison-Wesley, 1980.

[9] Ruhl, M. K.: Findings and Recommendations from

a Software Reengineering Case Study, Proc. the Sec-

ond Annual Systems Reengineering Workshop, March

1991, Silver Spring, Maryland, pp. 101–105.


