
Evolvable Programming based on Collaboration-Field and
Role Model

Tetsuo TAMAI
Interfaculty Initiative in Information Studies

The University of Tokyo
3-8-1 Komaba, Meguro-ku

Tokyo 153-8902, Japan

tamai@graco.c.u-tokyo.ac.jp

ABSTRACT
This is a brief introduction to our research on a collaboration field
and role model aiming to support evolvable software design and
programming.

1. INTRODUCTION
Software evolution is so challenging a them that various approaches
are conceivable to attack the problem. Promising approaches in-
clude: 1) observe evolution processes and find patterns or laws gov-
erning software evolution; 2) design computational models or lan-
guages that support development of evolvable software. We have
been conducting research on both of these approaches. Some re-
sults of the former approach have been published [20, 12], includ-
ing a short paper submitted to this workshop [19].

This talk is concerned with the latter approach, highlighting the
model comprising of fields of collaboration and roles played in the
fields [21, 22, 23].

2. MOTIVATION
Evolution is caused by a number of factors. One of the most effec-
tive ways of comprehending the evolution mechanism is to see it in
relation with environments. Environment changes trigger evolution
and software evolves to adapt to the change of its environment. In
this sense, evolution is strongly related with adaptation.

It is an ultimate target of AI, specifically that of intelligent agent
systems, to realize autonomously adaptable software. It is a long
way to go to achieve that goal and even when it is realized in the
distant future, there will remain the problem of how to control such
software systems.

Our goal is a little more modest, i.e. to build a computational model
that is flexible enough to cope with future changes but also expres-
sive enough to explicitly show design intentions and allow tracing
of control.

To explain motivation for our work, we give some typical examples
introduced by other researchers to illustrate their works. We share
similar objectives and the difference of approaches will become
clear by handling the same problems.

Honda et al. [6] gives an example of adaptation. A woman Hanako,
modeled as an object, marries with Taro and adapts to the environ-
ment family. She then gets employed as a researcher by a research
laboratory and adapts to the environment laboratory. The adapta-
tion should be made dynamically, thus it can be regarded as a kind
of evolution. At the same time, the object Hanako should preserve
its identity when she enters a new environment like the lab or even
after she quits the lab for some reason.

In Honda et al.’s model Morphe, suppose an object (e.g. Hanako)
enters an environment (e.g. a laboratory) and assumes a role (e.g. a
researcher), then the object acquires a new set of attributes and be-
haviors or alters some of the attributes and behaviors already pos-
sessed by the object through following transformation rules associ-
ated with the role. This strategy of employing transformation rules
must have been adopted mainly because the underlying language
of their work was a constraint based object-oriented language.

M. Fowler [1] gives an example of personnel roles in a company to
be assumed by employees. He lists up engineers, salesmen, direc-
tors and accountants as roles and put a question how to deal with
situations such that a person plays more than one role or a person
changes his or her role in the lifetime. The latter is a case of object
evolution. He shows several patterns that solve this problem and
gives a generic name role pattern.

E. Kendall [7] gives an example of the bureaucracy pattern. There
are five roles in the pattern: Director, Manager, Subordinate, Clerk
and Client. A client deals with a clerk. Manager and Subordinate
are subclasses of Clerk. A manager supervises subordinates and
reports to a director. Although evolution is not explicitly treated in
Kendall’s paper, this situation possibly raises the case that a person
evolves from the role of Subordinate to Manager or ultimately to
Director.

3. COLLABORATION FIELD AND ROLE
MODEL

3.1 Design principles
Our model called Epsilon is based on the constructs of collabora-
tion fields and roles interacting each other within those fields. Our
basic design principles are as follows.



Support adaptive evolution In our model, objects evolve by par-
ticipating in a collaboration field and assumes a role in the
field. Participation can be made dynamically and quitting
the field is also dynamically allowed. An object is free to
belong to multiple fields at a time.

Describe separation of concerns Each collaboration field repre-
sents a concern so that separation of concerns is explicitly
supported by the model. Interrelation of concerns are real-
ized through objects assuming roles of different collabora-
tion fields.

Advance reuse Besides objects, collaboration fields including roles
can be units of reuse. Moreover, since collaboration fields
and roles are given the status of first class constructs in a pro-
posed programming language, design patterns can be reused
directly at the programming level components.

Figure 1 illustrates an example of Contract Net Protocol [17]. It is a
protocol to solve a problem collaboratively through negotiation of
multiple processing nodes. A contract may be given by a manager
to a contractor who has bidden the lowest price. A node can be a
manager of one contract and a contractor of another. This problem
can be conveniently modelled by Epsilon; a contract is represented
by a context and a manager and contractor(s) by roles.

role:manager

role:contractor

������

���

context:contract-net 

�������

object

multiple binding

Figure 1: Contract Net Protocol

3.2 Language
Our language also named Epsilon has the following constructs to
support the above mentioned model features.

Declaration of collaboration fields and roles In our language, col-
laboration fields are called “contexts”. Context and role
are declared with attributes and methods just like object classes.
Declaration of role is placed inside of context declara-
tion, similar to inner classes of Java. Instances of contexts
and roles are created dynamically.

Encapsulation of roles in fields As declaration of roles is confined
in a context, their interaction is encapsulated within the con-
text. Roles in a context can communicate with each other but
cannot access to other contexts and roles in other contexts di-
rectly. Collaboration is naturally described on instance bases.
When a context instance is created, a unique instance of each
role of the context is created at the same time. Each role
instance can be referred by the role name qualified by the
context instance id but it is also possible to generate multi-
ple role instances of the same role types (role in this case is
regarded as a class or a template).

Below is an example to show how context and role are
declared and collaboration between roles are described.

context Company {
role Employer {

int salary = 100;
void pay() {

Employee.getPaid(salary);
}

}
role Employee {

int deposit;
void getPaid(int salary) {

deposit += salary;
}

}
}

Binding of objects with roles An object can be dynamically bound
to a role of a context and can be unbound later. An object
may be bound to multiple roles of different contexts. When
an object is bound to a role, it can make access to other roles
of the same context and conversely can be accessed by other
roles through the interface of the binding role. The attributes
of the combined object and role are merged and so are the
methods but there is a replacing (or renaming) convention
that enables an attribute or a method of the role to be regarded
the same as a designated attribute or a designated method of
the combined object, respectively.

Below is an example showing how an object is bound to a
role. A method bind(Object o) is defined to all roles,
meaning to bind the Object o to the role itself. It can be in-
terpreted that the declared role class inherits the interface of
class Role, including bind, unbind, and other methods.

class Person {
int money;

}
Person Tanaka = new Person();
Company todai = new Company();
tadai.Employee.bind(Tanaka)

replacing Employee.deposit
with Tanaka.money;

As collaborations are explicitly described and encapsulated as con-
texts in Epsilon, they can be reused as program components. Thus,
design patterns of Gamma et al. [2], for example, are good targets
for building reusable program components and they will be used
not just as a catalogue of design know-how’s but reusable compo-
nents.



An example of defining the pattern “Mediator” and using it as a
component is shown in the appendix.

A preliminary version of an Epsilon compiler was implemented on
ABCL/R3, a reflective concurrent object-oriented language [11].
We have also designedEpsilonJ, a languagewith Java like syntax as
shown above, and are on the way of implementing it as a translator
to Java.

4. RELATED WORKS
There are a number of works on “Role Models” [18]. A typical ex-
ample is the OOram methodology [14], which not only defines role
models but also integrates them by the step of role model synthe-
sis. Design patterns can also be regarded as describing patterns of
collaboration. The works of D. Riehle further extend this view and
employ the notion of role modeling to model object migration [25]
and to design composite patterns [15] and frameworks [16]. Also
related is the work by B. Kristensen et al. [10].

Gottlob et al. [3] deals with dynamic change of objects (but since
their main concern is data base, objects are more like data base
schemas) using the concept of roles. They claim that inheritance is
class based and thus inconvenient for handling dynamic changes.
Instead, they propose a role hierarchy and realize specialization and
inheritance at the instance level.

Also related is the notion of contracts. Contracts, proposed by R.
Helm et al. [5] is a construct for the explicit specification of be-
havioral compositions. A contract defines a set of communicating
participants and their contractual obligations. This notion of par-
ticipants correspond to roles but participants are actually objects
and thus the separation of objects and roles are somewhat blurred.

In these methodologies, roles play an important part at the phases
of analysis and design but usually become invisible in the imple-
mentation. However, there are some works that aim at preserving
roles explicitly in programs. For example, VanHilst and Notkin
[24] used class templates of C++ to implement roles. One of the
objectives of this proposed method is to reuse roles besides or even
in stead of objects.

There are many other works that by and large share motivations as
described above but take different approaches for solutions. No-
table ones are subject oriented programming and aspect oriented
programming. They share the notion that models or systems can be
grasped differently by views. The former calls the view subject and
the latter aspect.

Subject Oriented Programming
Harrison & Ossher [4] states that their goal is “to facilitate the
development and evolution of suites of cooperating applications.”
They specifically emphasize that the same object would be seen
differently by “subjects” and yet there should be coherent intrinsic
properties inside the object. They propose some probable methods
for reconciling various views. The way they see cooperation in this
framework is by sharing an object and explicit collaborations as
discussed in Section 3 are not necessarily intended.

Their work has been extended to “multi-dimensional separation of
concerns” [13].

Aspect Oriented Programming

Kiczales et al. [9] claims that a system modularization structure
designed from one aspect is often in conflict with modularization
from another aspect. Thus, they propose a method of describing as-
pects separately and then weaving them together to obtain a consol-
idated system. They implemented a language AspectJ to provide a
general mechanism for writing aspects and weaving them together
[8].

Compared to these related works, our approach of binding objects
and roles have the following characteristics:

1. Composition takes place when an object instance and a role
instance are bound together;

2. An object instance can be bound to multiple role instances
residing in different contexts;

3. As a role is also an instance it has its own state as well as
its own set of methods and preserve the state even after the
separation from its pair object;

4. The state of an object and that of a role construct a Cartesian
product state after composition;

5. A method of an object and a method of a role can be overrid-
den or renamed by another method of the counterpart role or
object and thus interaction between the object and role states
is made possible;

6. The above mechanism indicates that the binding of an ob-
ject and a role can be bi-directional as opposed to the uni-
directional relation of delegation.

5. REFERENCES
[1] M. Fowler. Dealing with roles.

http://www2.awl.com/cseng/titles/0-201-89542-0/apsupp/.
supplemental information to Analysis Pattern,
Addison-Wesley, 1997.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[3] G. Gottlob, M. Schrefl, and R”ock. Extending
object-oriented systems with roles. ACM Transactions on
Information Systems, 14(3):268–296, July 1996.

[4] W. Harrison and H. Ossher. Subject-oriented programming (a
critique of pure objects). In OOPSLA ’93, pages 411–428,
1993.

[5] R. Helm, I. M. Holland, and D. Gangopadhyay. Contracts:
Specifying behavioral compositions in object-oriented
systems. In ECOOP/OOPSLA ’90 Proceedings, pages
169–180, October 1990.

[6] Y. Honda, S. Watari, and M. Tokoro. Compositional
adaptation: A new method for constructing software for
open-ended systems. Computer Software, 9(2):122–136,
1992. in Japanese.

[7] E. A. Kendall. Role model designs and implementations with
aspect-oriented programming. In OOPSLA’ 99, pages
353–369, Nov. 1999.



[8] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. Getting started with aspectj. CACM,
44(10):59–65, Oct. 2001.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In Proceedings of the European Conference
on Object-Oriented Programming(ECOOP), Finland.
Springer-Verlag, June 1997.

[10] B. B. Kristensen and K. Osterbye. Roles: Conceptual
abstraction theory and practical language issues. Theory and
Practice of Object Systems, 2(3):143–160, 1996.

[11] H. Masuhara, S. Matsuoka, and A. Yonezawa. Implementing
parallel language constructs using a reflective object-oriented
language. In Reflection Symposium ’96, pages 79–91, Apr.
1996.

[12] T. Nakatani and T. Tamai. Empirical observations on object
evolution. In Asia-Pacific Software Engineering Conference
(APSEC’99), pages 2–9, Takamatsu Japan, Dec. 1999.

[13] H. Ossher and P. Tarr. Using multidimensional separation of
concerns to (re)shape evolving software. CACM,
44(10):43–50, Oct. 2001.

[14] T. Reenskaug, P. Wold, and O. Lehne. Working with Objects:
the OOram Software Engineering Method. Manning
Publications, Greenwich, 1996.

[15] D. Riehle. Composite design patterns. In OOPSLA ’97,
pages 218–228, Oct. 1997.

[16] D. Riehle and T. Gross. Role model based framework design
and integration. In OOPSLA ’98, pages 117–133, Vancouver,
Oct. 1998.

[17] R. G. Smith. The contract net protocol: High-level
communication and control in a distributed problem solver.
IEEE Trans. on Computers, 29(12):1104–1113, 1980.

[18] T. Tamai. Objects and roles: modeling based on the dualistic
view. Information and Software Technology,
41(14):1005–1010, 1999.

[19] T. Tamai. Analysis of software evolution processes using
statistical distribution models. In International Workshop on
Principles of Software Evolution (IWPSE’02), Orlando,
Florida, May 2002. ACM.

[20] T. Tamai and T. Nakatani. An empirical study of object
evolution processes. In International Workshop on Principles
of Software Evolution (IWPSE’98), pages 33–37, Kyoto, Oct.
1998.

[21] N. Ubayashi and T. Tamai. An evolutional cooperative
computation based on adaptation to environment. In Proc.
Asia Pacific Software Engineering Conference ’99, pages
334–341, Takamatsu, Japan, Dec. 1999. IEEE Computer
Society.

[22] N. Ubayashi and T. Tamai. RoleEP: Role based evolutionary
programming for cooperative mobile agent applications. In
International Symposium on Principles of Software
Evolution, pages 232–240, Kanazawa, Japan, Nov. 2000.
IEEE Computer Society.

[23] N. Ubayashi and T. Tamai. Separation of concerns in mobile
agent applications. In Proceedings of the 3rd International
Conference REFLECTION 2001, LNCS 2192, pages 89–109,
Kyoto, Sept. 2001. Springer.

[24] M. VanHilst and D. Notkin. Using Role Components to
Implement Collaboration-Based Designs. In OOPSLA ’96,
pages 359–369, 1996.

[25] R. Wieringa, W. de Jonge, and P. Spruit. Using dynamic
classes and role classes to model object migration. Theory
and Practice of Object Systems, 1(1):61–83, 1995.

APPENDIX
We write an example of Mediator Pattern as described in the GOF
design pattern book [2]. Here, a (static) role method newBind is
used. It is similar to bind except that it creates a new instance of
the role and bind the object passed as an argument to the role.

context MediatorPattern {
role Mediator {

void notify(Colleague a) {
}

}
role Colleague {

void raiseNotification() {
Mediator.notify(this);

}
}

}
class FontDialogueDirector {

MediatorPattern pattern;
ListBox fontList;
EntryField fontName;
Button ok;
Button cancel;
FontDailogueDirector() {

pattern = new MediatorPattern();
fontList = new ListBox();
fontName = new EntryField();
ok = new Button();
cancel = new Button();
pattern.Colleague.newBind(fontList)

renaming fontList.Changed
by Colleague.raiseNotification;

pattern.Colleague.newBind(fontName)
renaming fontName.Changed
by Colleague.raiseNotification;

pattern.Colleague.newBind(ok)
renaming ok.Changed
by Colleague.raiseNotification;

pattern.Colleague.newBind(cancel)
renaming cancel.Changed
by Colleague.raiseNotification;

pattern.Master.bind(this)
renaming Master.notify
by this.WidgetChanged;

}
void WidgetChanged(Widget theChangedWidget) {

if (theChangedWidget==fontList) {
fontName.SetText(fontList.GetSelection());

} else if (theChangedWidget==ok) {
// apply font change and dismiss dialog



// ...
} else if (theChangedWidget==cancel) {

// dismiss dialog
}

}
}


