
An Empirical Study of Object Evolution Processes

Tetsuo Tamai
Graduate School of Arts and Sciences

University of Tokyo
3-8-1 Komaba, Meguro-ku

Tokyo 153, Japan
+81-3-5454-6847

tamai@graco.c.u-tokyo.ac.jp

Takako Nakatani
Graduate School of Arts and Sciences

University of Tokyo
3-8-1 Komaba, Meguro-ku

Tokyo 153, Japan
+81-3-5454-6844

tina@graco.c.u-tokyo.ac.jp

��������

A number of interesting phenomena can be observed when
lifelong processes of object-oriented software are analyzed
from the viewpoint of object evolution. This paper reports
the results of empirical case studies and discuss about evo-
lution patterns and laws of objects.

��	
���� Evolution process, object-oriented software, em-
pirical study, statistical model

 ������������

We envy people who inherit legacy but pity those who inherit
legacy software. But the stock of legacy software keeps on
growing and old software systems are aging steadily. The
eventual solution for this problem should be re-engineering,
typically using the object-oriented technology. In re-engineering
an aged system, we may have to look back its evolution his-
tory. What we should keep in mind at the same time is that
object-oriented systems will also go through their own evo-
lution processes and we should be prepared for that. How-
ever, the current wide variety of object-oriented technolo-
gies, from OO analysis and OO design to reuse and from
design patterns to application frameworks are focusing on
the methods of developing new systems and appear to care
little about the long range process of evolution.

One of the pioneering works that introduced the word
“evolution” to describe the changing process of systems over
time is Belady & Lehman[2]. Their “laws” were derived
from observation on OS/360’s version history. Tamai & Torim-
itsu [8] examined evolution processes of application sys-
tems, especially focusing on system replacement strategies.
Analogically speaking, their work treated evolution processes

of not just single generation but over multiple generations.
The above two works are dealing evolution at the system

level. For the object-oriented systems, evolution at the object
level may have the same or even more significance. An ob-
ject may live within multiple systems concurrently and may
keep on living after the death of the system it belongs to, mi-
grating into another system. There are a large population of
objects living and evolving in the world, many of which are
interacting and moving through internets. Using an analogy
to biology again, the object level evolution can be compared
to the DNA level evolution whereas the system level is com-
pared to the species level evolution [4].

The objective of our research is to analyze evolution pat-
terns of objects and construct an object evolution process
model. When a sound model is successfully constructed, it
will be beneficial not only by providing fundamental basis
for understanding real evolution processes but also by sup-
porting software engineers over long term object engineer-
ing processes through a software environment based on the
model.

� ��������

We intend to learn from biology not just for extracting analo-
gies or metaphors but expecting to borrow rich models. An-
alyzing a population of objects requires the same observa-
tional or “scientific” viewpoint as analyzing a population of
life. At the same time, we should not forget that objects are
artifacts and their evolution is intrinsically caused by human
engineering activities. Results of evolution process observa-
tion and analysis have to be useful for object engineering.
Our standpoint is to combine these two perspectives, scien-
tific and engineering.

�� ���� �������

At the first stage of our research, we have been taking an
empirical approach, i.e. through conducting case studies. So
far, we took the following three cases for our study.

1. Heat Exchange Simulation System

� Description: a system to simulate heat flow and
temperature distributionwithin a system composed
of various heat devices.

� No. of versions: 4

� Development period: 8 months

� No. of programmers: 1

� Language: Visual Smalltalk

� Size: 52 classes in Version 4

2. Cash Receipts Transaction Management System

� Description: a system of a service company to
manage money reception from customers by match-
ing payments to invoices.

� No. of versions: 4

� Development period: 8 months

� No. of programmers: 1

� Language: Visual Smalltalk

� Size: 62 classes in Version 4

3. Securities Management System

� Description: a system to store information of se-
curities possessed by a company: i.e. face value,
purchased price, interest, and redemption, and sup-
port investment decisions.

� No. of versions: 14

� Development period: 3 months

� No. of programmers: 4

� Language: Visual Smalltalk

� Size: 133 classes in Version 14

For each case, data of four or more versions were avail-
able. The meaning of “version” is different between the first
two systems and the last. In the first two systems, each
version was delivered to its customer and the customer re-
turned feedback and new requirements for the next version.
A version of the last system corresponds to a snapshot of the
system being developed at a certain checkpoint during the
development phase. All these systems are rather small but
intended for practical use and the first two are actually used
now.

��� �������

We defined a set of metrics and measured the series of ver-
sion data of the three systems. There have been a number of
proposals and discussions on metrics of object-oriented sys-
tems [3, 5]. We did not attempt to add totally new kinds of
metrics to this stock. We classified metrics into three layers:
system, class, and method and measured data including the

number of classes or the depth of the class tree for the sys-
tem layer, the number of methods, instance variables, and
subclasses for the class and the number of lines of code for
the method. Naturally, aggregated or averaged measures of
the lower layer can also be measures for the upper layer, e.g.
the total or average number of lines of code of over methods
is a metric for a class.

What should be new in our approach are the way data are
collected and analyzed:

1. Data are measured through a sequence of versions as
time-series data. They are analyzed in time-series.

2. For collected basic statistics, not only means and vari-
ances are cared but also their distribution shapes are
studied.

3. Not only static data but also dynamic data, e.g. num-
bers of messages sent or received between object in-
stances, are collected. (But in this paper, we do not
discuss about dynamic metrics.)

� �������� ����������� ��������

Quantitative analysis using the above metrics was reinforced
by qualitative analysis of tracing class structure and other
semantic property changes. We also surveyed project doc-
uments and conducted interviews to the developers of the
systems. All these results were consolidated in the efforts
to relate the users’ requirements change and the developers’
design intension change to the system and object evolution
processes.

We can summarize the major observations into the fol-
lowing four points [7, 6].

1. Fundamental statistics and distribution shapes are rel-
atively stable over time.

2. On the other hand, some peculiar sample points with
exceptionally large values exist. They may imply the
existence of some design anomalies or exceptional de-
sign decisions.

3. Many of measured values have a trend of growing over
time but the changes are not continuous; sometimes the
growth is rapid and then the growth is slow. Periods of
discontinuous change often indicate the occurrence of
architectural level change.

4. A unique metric that characterizes class trees exists.

We will especially discuss the first and the the fourth of
the above points in detail in the succeeding sections.

�� ������ ��������� �����

Some folklore data are known in terms of object system size.
A. Aoki, who has developed one million lines of code in
his long career as Smalltalk programmer [1], once said in

all systems or libraries he developed the average number
of methods per class is 20, the average number of lines per
method is 10 and thus the average number of lines per class
is 200. Moreover, these values are also stable at the same
level even for standard libraries supplied by vendors or other
organizations. Maybe, this should not be called a folklore
but be accepted as an observation based on solid data and
experiences.

Interestingly, our measurement also confirmed this ob-
servation. Table 1 shows some basic statistics that are con-
sistent with the above observation. Those values are roughly
the same over time(versions) and over systems.

Table 1: Basic Statistics of Heat Exchange Simulation Sys-
tem

Methods per class
Version 1 2 3 4
Mean 15.1 19.4 19.7 18.3

Std Dev. 10.3 16.5 19.4 19.9

Lines per method
Version 1 2 3 4
Mean 8.1 8.5 9.1 9.4

Std Dev. 10.8 16.0 19.5 21.5

Fig. 1 and 2 show typical histograms of size data. It can
be seen that not only the mean values are about the same
among different versions or systems but also the distribution
has a common shape. All graphs appear to imply there exists
a common statistical model that explains these distributions.

����������

�
�
�
�
�
�

�����������
�
�
�
�
� ver.1

0

5

10

15

5

25 45 65 85

10
5

12
5

14
5

����������

�
�
�
�
�
�

�����������
�
�
�
�
� ver.2

0

5

10

15

5

25 45 65 85

10
5

12
5

14
5

����������

�
�
�
�
�

�����������
�
�
�
�

ver.3

0

5

10

15

5

25 45 65 85

10
5

12
5

14
5

����������

�
�
�
�
�

�����������
�
�
�
�

ver.4

0

5

10

15

5

25 45 65 85

10
5

12
5

14
5

Figure 1: Histograms of #Methods per Class for Heat Ex-
change Simulation System

At the first glance, the Poisson distributionmodel appears
to fit. However, some trial fitting soon revealed that the Pois-
son distribution would not fit well. We also tried the geo-
metric distribution model but it did not fit either. Then, we
focused our attention on the negative binomial distribution.

����������

�
�
�
�
�

�����������
�
�
�
�

ver.1

0

5

10

15

20

5

25 45 65 85

10
5

12
5

14
5

����������

�
�
�
�
�

������������
��
��
��
��

ver.2

0

5

10

15

20

5

25 45 65 85

10
5

12
5

14
5

����������

�
�
�
�
�

�����������
�
�
�
�

ver.3

0

5

10

15

20

5

25 45 65 85

10
5

12
5

14
5

����������

�
�
�
�
�

������������
��
��
��
��

ver.4

0

5

10

15

20

5

25 45 65 85

10
5

12
5

14
5

Figure 2: Histograms of #Methods per Class for Cash Re-
ceipts Transaction Management System

The reasons the negative binomial distribution is preferred
are:

1. Its variance is larger than that of the Poisson distribu-
tion when the mean is equal. It is expected to fit better
to the distributions like Fig. 1 and 2 that have long right
tails.

2. The negative binomial distribution originally has the
meaning of length, because it is derived as represent-
ing the distribution of the Bernoulli trial length when a
certain event S occurs exactly a fixed number of times.
Thus, it is expected to explain the code length distribu-
tion.

Fig. 3 shows the curve fitting of the negative distribution
model to the Cash Receipts Transaction system LOC data.
The fitting looks quite good but when the Pearson’s test of
goodness of fit is applied, the result does not support the fit.

ver.1

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35 40 45 50

ver.3

0
200
400
600
800
1000
1200
1400
1600

0 5 10 15 20 25 30 35 40 45 50

ver.2

0
200
400
600
800
1000
1200
1400
1600

0 5 10 15 20 25 30 35 40 45 50

ver.4

0
200
400
600
800
1000
1200
1400
1600

0 5 10 15 20 25 30 35 40 45 50

MLOC

MLOC

MLOC

MLOC

#methods

#methods

#methods

#methods

Figure 3: Fitting of Negative Binomial Distribution Model
to #Lines per Method Distribution

To refine the model application, we decomposed the set
of classes into subsets, each corresponding to a class tree. As

will be shown in the next section, classes belonging to the
same class tree generally share some homogeneous proper-
ties, which distinguish them from classes of other class trees.
Thus, it is expected that the model fitting applied to each set
of classes belonging to a tree may give better results. Actu-
ally, it turned out that the hypothesis the negative binomial
distribution model fits cannot be rejected by level 5% X test
for most of the trees of the three case systems.

If the negative binomial distribution model fits method
size or class size distributions, then the process of length
of code being determined may be interpreted as a stochastic
process as follows. Programming activities of a programmer
is observed by a third person. To the observer’s eyes, the pro-
gramming looks like repetitive random selections of state-
ments (lines) or methods. When a defined number of state-
ments (or methods) that have specific properties are chosen,
it will complete a method (or a class). The probability that a
randomly chosen statement/method has this property is con-
stant.

The distribution pattern like this is not new to the soft-
ware community. The number of lines of code per module
should have had a similar shape of distribution before the
object-oriented era. However, there seems to have been no
previous works that attempted statistical distribution model
fitting.

The probability function of the negative binomial distri-
bution is given by

���� �

�
�� �
� � �

�
����� ������ (1)

Thus, the distribution is determined by two parameters,
� and �. Estimated values of these two parameters should
have good information, richer than the pair of means and
variance. Fig.4 plots these estimated parameter values for
class trees of the Heat Exchange Simulation System, where
arrows indicate directions of version advancement. Similar
graphs are given for the Cash Receipt Transaction Manage-
ment System in Fig. 5 and for the Securities Management
System in Fig. 6.

□ Presenter　× Calculator　△ Editor

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8

0 0.1 0.2 0.3 0.4
p

k

Figure 4: Trace of parameters (p,k) for Simulation System

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6

0 0.1 0.2 0.3
p

◇ TableConstructor □ TableManipulator
△ Persistent × Adaptor

k

Figure 5: Trace of parameters (p,k) for Cash System

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2

0 0.1 0.2 0.3 0.4
p

□ Adaptor ×ConstTable　△ StockDomain

k

Figure 6: Trace of parameters (p,k) for Securities System

These graphs suggest the following points.

1. There exists a strong linear correlation between the
two parameters. The interpretation of this apparently
surprising phenomenon can be straightforward, i.e. the
mean is constant over versions, because the mean of
the negative binomial distribution (1) is given by ���.

2. As the result of the above linear relation, when the
value of � gets larger, also the value of � gets larger
and when the former gets smaller, so does the latter.
The larger � and � may be interpreted as more pat-
terned coding, stronger convention or uniformly orga-
nized programs and the smaller � and � may imply
more room for programming decisions.

3. As seen by the arrow direction, � and � are getting
smaller as the version proceeds in the Heat Simula-
tion System, getting larger in the Cash Management
System and not conclusive in the Securities System.
Based on the implication of larger/smaller values of �
and � stated above, these trends seem to explain the
fact that the Heat Simulation System took the process

of adding new modules according to the users’ require-
ments change, while the Cash Management System
followed the process of restructuring the system by the
software designer.

��� ����� ���� ���������������

As expected, the number of lines and the number of methods
per class have a strong correlation. Actually, when we con-
ducted statistical testing, the correlation between the number
of lines and the number of methods of a class was validated
for each of the three systems.

The scattered diagram of these two values over classes of
Heat Exchange Simulation System is illustrated at the top-
left of Fig. 7. A conspicuous pattern of this diagram is the
existence of multiple lines. Actually each of these lines cor-
responds to a set of classes that belong to the same class tree,
as the other three diagrams show.

0
100

200

300

400

500

600

700

800

0 20 40

Editor Tree

0

200

400

600

800

1000

0 50 100 150

Presentor Tree

0
50

100

150

200

250

300

350

0 50 100

Calculator Tree

����������
�
�
�
�
�
�
�

�������
�
�
�
�
�

��
���

�
�

��

������
�

���
��

��
�
��
�
�

�
�

�

��
�
�
�
�

�

�

����
��

�
�

��
�
�
�
�

�

�

��
�
�
�
�

�
�
�

�
0

200

400

600

800

1000

1200

0 50 100

�
Presen.CLOC Editor.CLOC

Calcu.CLOC

All Trees

CLOCCLOC

CLOC
CLOC

NOM
NOM

NOM NOM

Figure 7: Scattered Diagrams of #Lines vs. #Methods per
Class for Heat Exchange Simulation System

The most peculiar phenomenon can be observed in the
diagram of Editor Tree (top-right). Here, the arrow repre-
sents a move of one class from Version 3 to Version 4. The
class had an exceptional value of #Lines/#Methods in Ver-
sion 3 but it regressed to the “normal” value in Version 4.
This phenomenon suggests that the characteristic value of
#Lines/#Methods or the regression coefficient between the
two metrics for each class tree has a strong constraining
power.

To explore the significance of this characteristics of class
trees, we set up three hypothesis and conducted statistical
testing.

1. The regression coefficients between different class trees
are different.

This hypothesis was statistically validated by reject-
ing the null hypothesis of equality between two coeffi-
cients of different trees. It was validated in all the three
systems.

2. The regression coefficient of a class tree is stable over
evolution.
This was validated by the fact that the null hypothesis
of equality between two coefficients of different ver-
sions cannot be rejected.

3. The regression coefficient of a class tree is stable over
different programmers.
In our data, there is only one case where classes of
a single tree were divided into two and developed by
different programmers. Data of that case were tested
and the result showed that the difference between the
two is not statistically significant.

These findings suggest that there exist some kind of de-
sign criteria for each class tree that designers implicitly as-
sume. Monitoring this metric will give good feedback to the
designers.

 ���������� ��� !����� "���

We conducted empirical studies on three object-oriented sys-
tems’ evolution processes and found several interesting evo-
lution patterns and properties. We plan to collect more cases
and validate and extend the findings. Based on such knowl-
edge, we intend to construct a general object evolution model,
which can be used for developing long-term evolution design
environment.

�����
���#�$���� The authors would like to thank At-
sushi Tomoeda and Harumi Matsuda for their substantive
work of collecting and analyzing key data for this research.

%�&�������

[1] Aoki, A.: Smalltalk Textbook, http://www.sra.co.jp /peo-
ple/aoki/SmalltalkTextbook/index.html

[2] Belady, L. A. and Lehman, M. M.: A Model of Large
Program Development, IBM Systems Journal, Vol. 15,
No. 3 (1976), pp. 225–252.

[3] Chidamber, S. R. and Kemerer, C. F. A Metrics Suite for
Object Oriented Design, IEEE Transactions on Software
Engineering, 20, 6 (1994), 476–493.

[4] Dawkins, R.: The Selfish Gene, Oxford University Press,
1976.

[5] Lorenz, M. and Kidd, J. Object-Oriented Software Met-
rics, Prentice Hall (1994).

[6] Nakatani, T., Tamai, T., Tomoeda, A. and Matsuda, H.:
Towards Constructing a Class Evolution Model, Pro-
ceedings of Asia-Pacific Software Engineering Confer-
ence, December 1997, Hong Kong, pp. 131–138.

[7] Nakatani, T. and Tamai, T.: Evolutional Characteris-
tics of Class Inheritance Trees, Proceedings of the In-
ternational Symposium on Future Software Technology
(ISFST-97), October 1997, Xiamen, China, pp. 44 – 51.

[8] Tamai, T. and Torimitsu, Y.: Software Lifetime and
its Evolution Process over Generations, Proc. Confer-
ence on Software Maintenance – 1992, Orlando, Florida,
November 1992, pp. 63–69.

