Separation of Concerns
in Mobile Agent Applications

Naoyasu Ubayashi! and Tetsuo Tamai?

1 Systems Integration Technology Center, Toshiba Corporation, Tokyo, Japan,
naoyasu.ubayashi@toshiba.co. jp
2 Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan,
tamai@graco.c.u-tokyo.ac.jp

Abstract. Using mobile agent systems, cooperative distributed appli-
cations that run over the Internet can be constructed flexibly. How-
ever, there are some problems: it is difficult to understand collabora-
tions among agents and travels of individual agents as a whole because
mobility /collaboration functions tend to be intertwined in the code; it
is difficult to define behaviors of agents explicitly because they are in-
fluenced by their external context dynamically. Many aspects of mobil-
ity /collaboration strategies including traveling, coordination constraints,
synchronization constraints and security-checking strategies should be
considered when mobile agent applications are constructed.

In this paper, the concept of RoleEP(Role Based Evolutionary Program-
ming) is proposed in order to alleviate these problems. In RoleEP, a field
where a group of agents roam around hosts and collaborate with each
other is regarded as an environment and mobility/collaboration func-
tions that an agent should assume in an environment are defined as roles.
An object becomes an agent by binding itself to a role that is defined
in an environment, and acquires mobility/collaboration functions dy-
namically. RoleEP provides a mechanism for separating concerns about
mobility /collaboration into environments and a systematic evolutionary
programming style. Distributed applications based on mobile agent sys-
tems, which may change their functions dynamically in order to adapt
themselves to their external context, can be constructed by synthesizing
environments dynamically.

1 Introduction

Recently, cooperative distributed applications based on mobile agent systems
are increasing. Most of these applications are implemented in Java so that they
can run on any platform[18]. Using mobile agents, cooperative distributed ap-
plications can be developed that run over the Internet more easily and more
flexibly than before. However, there are problems as follows: it is difficult to un-
derstand collaborations among agents and travels of individual agents as a whole
because mobility/collaboration functions tend to be intertwined in the code; it
is difficult to define behaviors of agents explicitly because they are influenced by
the external context. Many aspects of mobility /collaboration strategies including

traveling, task executions, coordination constraints, synchronization constraints,
security-checking strategies and error-checking strategies should be considered
when mobile agent applications are constructed.

This paper proposes the concept of RoleEP(Role Based Evolutionary Pro-
gramming) in order to alleviate the above problems. In RoleEP, a field where a
group of agents roam around hosts and collaborate with each other is regarded
as an environment and mobility/collaboration functions that an agent should
assume in an environment are defined as roles[28]. Mobile agent applications
that may change their functions dynamically in order to adapt themselves to
their external context can be constructed by synthesizing multiple environments
dynamically. There are two contributions in this paper: 1) RoleEP provides a
mechanism for separating concerns about mobility/collaboration in mobile agent
applications; 2) RoleEP gives a systematic and dynamic evolutionary program-
ming style. In this paper, problems that may occur when distributed applica-
tions are designed by using traditional construction approaches are pointed out
in section 2. In section 3, the concept of RoleEP is introduced to address these
problems. The framework Epsilon/J' that realizes RoleEP on Java is explained
in section 4, and examples described in Epsilon/J are shown. Section 5 shows
how to implement Epsilon/J using a reflection mechanism. Section 6 is a discus-
sion on RoleEP. In section 7, reference is made to a number of works related to
RoleEP. Lastly, in section 8, we conclude this paper.

2 Problems of constructing cooperative mobile agent
applications

In this section, a distributed information retrieval system—a typical example
of cooperative distributed applications based on mobile agent systems—is de-
scribed by using traditional approaches, and problems that may occur in those
approaches are pointed out. An example is illustrated in Figure 1.

Example A user requests an agent to search information on specified topics.
The agent divides the request into several subtasks according to the kinds of
topics and assigns them to searcher agents that are dispersed over the Inter-
net by roaming around hosts and executing the contract-net protocol[25] at
each host. The contract-net protocol is a protocol for assigning tasks to objects
through negotiations. In the contract-net protocol, managers and contractors ex-
ist. First, a manager announces a task to all contractors. Then, each contractor
compares its own condition with a condition shown by the manager, and if the
former condition satisfies the latter condition, the contractor sends its bid to the
manager. The manager selects a contractor that shows the most satisfactory bid-
condition and awards the contract to it. There are two aspects to be considered
in this example. One is a mobility aspect and the other is a collaboration aspect
(contract-net protocol). We want to describe these two aspects as separately as
possible.

! This name originates from the head letter of environment.

seacher

% \user proxy
confractor ()

Host

o

user prox /[
/

(manag:r)\A seacher

=

(contractor)

Slo

seacher

user proxy / (contractor)

R
(manager) \
X

user proxy

roaming around hosts
contract-net

protocol

Host
Host

Fig. 1. Distributed information retrieval system

2.1 Casel: Orthodox approach

In the orthodox approach, a program description maps domain structures to
program structures. The following program is written in quasi-code similar to
Java.

/**
* User Proxy
*/
public class UserProxy{
public UserProxy(){
roam();

public void roam(){
// Move to the next host
// and execute the method "contractNet_start".

public void contractNet_start(){
// Multicast a task-announcement message "contractNet_taskAnnounce"
// to all information searchers that exist in the current host.

public void contractNet_bid(InfoSearcher i){
// Receive responses from information searchers.
// Select the "best_contractor"
// if all bids are finished.

best_contractor.contractNet_award(this);

}

public void contractNet_end(Result r){
// Save the information from the "best_contractor".
// Move to the next host
// and execute the method "contractNet_start" again.

roam();

VLS
*/ Information Searcher
*

public class InfoSearcher{
public InfoSearcher(){}

public void contractNet_taskAnnounce(UserProxy u){
// Compare my condition with a condition shown by the user proxy.
// Send a message "contractNet_bid" to the user proxy
// if the searcher’s condition satisfies the user proxy’s condition.

u.contractNet_bid(this);
}

public void contractNet_award(UserProxy u){
// Execute task
and return the result to the user proxy.

u.contractNet_end(executeTask());

public Result executeTask(){
// Search information.

}
public class Result{}

This program is described based on weak mobility[10] in which only program
code and instance data are moved. This program starts from the constructor
UserProzy() that calls roam method. In the roam method, the agent moves to
the next host and executes the contractNet_start method. In the contractNet_start
method, the agent (as a manager) broadcasts a task announcement to all agents
(as contractors) that exist in the host. The manager agent receives responses
from other contractor agents by the contractNet_bid method and selects the
best contractor agent. Then, the manager agent awards the contract to the
contractor agent. The manager agent saves results of the task execution in the
contractNet_end method and moves to the next host.

It is difficult to understand behaviors of this program as a whole since mobil-
ity/collaboration functions that compose a program are not described separately.
Code for roaming around hosts is mixed with code for executing the contract-net
protocol. Moreover, it is difficult to extend program code. If another function
is added to this program, the contractNet_start method and the contractNet_bid
method may have to be changed to adapt itself to the new function. These
methods will include code that is not related to the contract-net protocol. The
problem with this approach is that the program code becomes more complex as
new functions are added to the code.

2.2 Case2: Design-pattern approach

Next, we take the design-pattern[11] approach that may alleviate the problems
that are pointed out in Casel. Recently, design patterns focused on mobile
agents are proposed. For example, Aridor and Lange propose design patterns
for Aglets[15][22], a typical mobile agent system based on Java, as follows[3]:

1. Traveling Patterns: Itinerary, Forwarding, Ticket, etc.

2. Task Patterns: Master-Slave, Plan, etc.

3. Collaboration Patterns: Meeting, Locker, Messenger, Facilitator, Organized
Group, etc.

The following Aglets program is described using the Itinerary pattern, a
design pattern for roaming around hosts and executing a task at each host.
In Aglets, a mobile agent is defined as an instance created from a subclass of
the Aglets class. In this pattern, information for roaming is encapsulated in an
instance of the Itinerary class. It is only necessary to change the content of the
instance when host addresses for roaming are changed.

VLS
* User Proxy Aglet
*/
public class UserProxy extends Aglets{
public void onCreation(Object init){
// Initialize the aglet.
// Only called the very first time this aglet is created.

roam();

public void roam(){
// Set sequential planning itinerary.
SeqPlanItinerary itinerary = new SeqPlanItinerary(this);
itinerary.addPlan(HostAddressl, "contractNet_start");
itinerary.addPlan(HostAddress2, "contractNet_start");

ifinerary.addPlan(HostAddressN, "contractNet_start");

// Start the trip.
itinerary.startTrip(Q);

}

public void contractNet_start(){}
public void contractNet_bid(InfoSearcher i){}
public void contractNet_end(Result r){}

*ok

/* Information Searcher Aglet

*/
public class InfoSearcher{

public void onCreation(Object init){}
public void taskAnnounce(UserProxy w){}
public void award(UserProxy u){}

public Result executeTask(){}

}

In Aglets, a constructor is specified by the onCreation method. The onCre-
ation is only called the very first time an aglet is created. In this program,
onCreation calls roam method in which an instance is created from the SeqPlan-
Itinerary class that is a subclass of the Itinerary class and host addresses for
roaming and methods that are executed at each host are specified in the addPlan
method. Here, N host addresses and the contractNet_start method are specified.
An agent starts to roam around hosts when an instance of the SeqPlanltinerary
class receives a startTrip message.

Although a mobility function (code for roaming around hosts) is separated
from a collaboration function (code for executing the contract-net protocol), both
of these two functions must be described as methods of an agent. So, separations
of mobility/collaboration descriptions are limited only within an agent. If the
user proxy agent must have other collaboration functions in addition to the
contract-net protocol, the code of this agent will be more complex. The mix-in
approach is often used in order to address this kind of problems. In this case,
functions requested for a manager can be described in a superclass. If an agent
has many roles, the agent must inherit corresponding superclasses statically. So,
program code must be modified whenever roles requested for an agent are added
or deleted. Moreover, multiple inheritances are not allowed in Java.

2.3 Case3: Role model & AOP approach

AOP(Aspect Oriented Programming)[17][13][8] is a programming paradigm such
that a concern that cross-cuts a group of objects is modularized as an aspect.
A compiler, called weaver, weaves aspects and objects together into a system.
Concerns including error-checking strategies, synchronization policies, resource
sharing, distribution concerns and performance optimizations are examples of
aspects.

AspectJ[4], AOP language, is an aspect-oriented extension to Java. A pro-
gram in AspectJ is composed of aspect definitions and ordinary Java class def-
initions. An aspect is defined by aspect that is an AspectJ specific language
extension to Java. Aspects and classes are woven together by AspectJ weaver.
Main language notions in Aspect] are introduces and advises. Introduces adds
a new method in which cross-cutting code is described to a class that already
exists. Advises modifies a method that already exists. Advises can append cross-
cutting code to a specified method. Before is used in order to append code before
a given method, and after is used in order to append code after a given method.

Kendall proposed role model designs and implementations with AspectJ in
[16]. In the role model, an object has core intrinsic attributes/methods and a role
that adds extrinsic attributes/methods provides perspectives that can be used by
other objects. Kendall recommended an approach: 1) introduce the interface for
the role specific behavior to the core class; 2) advise the implementation of the
role specific behavior to instances of the core class; 3) add role relationships and
role contexts in the aspect instance. The contract-net protocol can be described
as follows?.

2 The syntax of this program is based on AspectJ 0.8beta3.

UserProxy

YELS
* User Proxy Aglet

*/
public class UserProxy extends Aglets{
public void onCreation(Object init){
roam();

public void roam(){
SeqPlanItinerary itinerary = new SeqPlanItinerary(this);

}
}

/**
* Manager Aspect

*/

aspect Manager extends Role{

// Role relationships in aspect
protected Contractor[] contractor;

// Introduce empty behavior to the class UserProxy.
public void UserProxy.start(){}

public void UserProxy.bid(InfoSearcher i){}

public void UserProxy.end(Result r){}

// Advise an instance of the class UserProxy.
before(UserProxy u): instanceof(u) && receptions(public void start){

// Multicast a task-announcement message "taskAnnounce"
// to all information searchers that exist in the current host.

before(UserProxy u): instanceof(u) && receptions(public void bid){

// Receive responses from information searchers.
// Select the best one "best_contractor"
// if all bids are finished.

best_contractor.award(this) ;

before(UserProxy u): instanceof(u) && receptions(public void end){

// Save the information from the "best_contractor".

InfoSearcher

VLS

* Information Searcher Aglet

*/
public class InfoSearcher extends Aglets{
public void onCreation(Object init){}
public Result executeTask(){}

VLS
* Contractor Aspect
*/

aspect Contractor extends Role{

// Role relationships in aspect
protected Manager manager;

// Introduce empty behavior to the class InfoSearcher.
public void InfoSearcher.taskAnnounce(UserProxy u){}
public void InfoSearcher.award(UserProxy w){}

// Advise an instance of the class InfoSearcher.
before(InfoSearcher i): instanceof(i) && receptions(public void taskAnnounce){

// Compare my condition with a condition shown by the user proxy.
// Send a message "bid" to the user proxy
// if the searcher’s condition satisfies the user proxy’s condition.

u.bid(this);

before(InfoSearcher i): instanceof(i) && receptions(public void award){

// Execute task
// and return the result to the user proxy.

u.end(executeTask());

}
}

Although a mobility function is completely separated from a collaboration
function in this approach, the following problems still remain.

1. Description of aspects depends on specific core classes. The name UserProzy
appears in the definition of the aspect Manager. So, the description of Man-
ager cannot be applied to other core classes.

2. Description of role behavior depends on method names of core classes. That
is, when a role uses a method of a core class, the role must call the method
directly. In the aspect Contractor, InfoSearcher.award() must call ezecute-
Task() that is a method of the core class InfoSearcher. In general, there are
many kinds of contractors that implement their own task execution meth-
ods whose names may be different. For example, a contractor that has an
information searching function may have a task execution method named
searchInfo. On the other hand, a contractor that has an information deliv-
ering function may have a task execution method named deliverInfo.

3. An aspect must be defined per role. A description that cross-cuts roles may
be dispersed in several aspects.

3 RoleEP

3.1 Basic concepts

In this section, RoleEP, an approach that addresses the problems pointed out
in section 2, is proposed. RoleEP provides the following for constructing mo-
bile agent applications: 1) a mechanism for separating concerns about mobil-
ity/collaboration including traveling, task executions, coordination constraints,
synchronization constraints, security-checking strategies and error-checking strate-
gies; 2) a systematic and dynamically evolvable programming style.

RoleEP is composed of model constructs including agents, roles, objects and
environments as shown in Figure 2. Agents can roam around hosts, collaborate

Envi ronnent for collaboration

nessage
commruni cati on

Environnent for mobility

Bi ndi ng-Interface .
abstract net hod mgrate

concrete _
et hod

Fig. 2. RoleEP model constructs

bi nd bj ect

with other agents that exist in the same environment by sending messages to
each other and execute their original functions. These functions requested to
agents can be separated to mobility/collaboration functions and original func-
tions. Original functions are common to all kinds of environments and do not
contain mobility/collaboration functions that are given by specific environments.
Corresponding to the example shown in section 2, functions for roaming around
hosts can be regarded as mobility functions and functions for the contract-net
protocol can be regarded as collaboration functions. A function that is executed
by the ezecuteTask (in Case 3) can be regarded as an original function that is
commonly used by not only the contract-net protocol but also other kinds of
collaborations. Original functions are functions that are not related to travels or
collaborations directly. In the contract-net protocol, functions of the execute Task
vary according to target applications. It is desirable to separate original functions
from mobility/collaboration functions. If concrete functions of the executeTask
can be described separately, applications that use the contract-net protocol can
be implemented by changing the description of ezecute Task. In RoleEP, these two
kinds of functions are described separately. Environments and roles are model
constructs that describe mobility/collaboration functions, and objects are model
constructs that describe original functions[28]. An agent is composed dynami-

cally by binding an object to a role that belongs to an environment. Syntactic
definitions of environments, roles, agents and objects are as follows>:

environment ::= [environment attributes, environment methods, roles]
role ::= [role attributes, role methods, binding-interfaces]

agent ::= [roles, object]

object ::= [attributes, methods]

3.2 Environment and role

An environment is composed of environment attributes, environment methods
and roles. A role, which can move between hosts that exist in an environ-
ment, is composed of role attributes, role methods and binding-interfaces. Mobil-
ity /collaboration functions including tours around hosts and message communi-
cations among agents are described by role attributes and role methods. Role at-
tributes and role methods are only available in an environment to which the role
belongs. A binding-interface, which is similar to an abstract method interface, is
used when an object binds itself to a role. The mechanisms of binding-interfaces
and binding-operations are explained later. Common data and functions that
are used in roles are described by environment attributes and methods. Direc-
tory services such as role-lookup-services are presented as built-in environment
methods. A travel or collaboration is encapsulated by an environment and roles.
The notion of roles in RoleEP extends the role model in 2.3 so that roles can
have not only collaboration functions but also mobility functions.

3.3 Object and agent

An object, which cannot move between hosts, is composed of attributes and
methods. Although an object cannot move between hosts, it can move by binding
itself to a role that has mobility functions. An object becomes an agent by
binding itself to a role that belongs to an environment, and can collaborate with
other agents within the environment. An object can participate in a number
of environments simultaneously. The agent identifier is the same as the object
identifier. Role identifiers can be regarded as aliases of the object identifier. An
agent can be referenced by its role identifier from other agents that exist in the
same environment.

3.4 Binding-operation

Figure 3 shows the notion of the binding-operation that binds binding-interfaces
of roles to concrete methods of objects. The binding-interface defines the inter-
face in order to receive messages from other roles existing in the same environ-
ment. Using the binding-interface, collaborations among a set of roles can be
described separately from each object. The binding-operation is permitted only

3 Environment, role, agent and object are instances. The symbol ::= means that the
left-hand side is defined by the right-hand side.

(before action)

send a message
corresponding ta

(after action)

convert & delegate
a message

concrete methods

Fig. 3. Binding-operation

when an object has methods corresponding to the binding-interface. Binding-
operations are implemented by creating delegational relations between roles and
objects dynamically. That is, if a role receives a message corresponding to its
binding-interface from other roles or itself, the role delegates the message to
an object bound to the role. For example, if the binding-interface executeTask
defined in a role is bound to the searchInfo method defined in an object, the
message ”executeTask” received by the role is renamed ”searchInfo” and dele-
gated to the object. Many kinds of collaborations can be described by changing
combinations of roles and objects. Binding-operations correspond to weaver in
AOP, and binding-interfaces correspond to join points that are weaving points
in AOP.

3.5 Example

Figure 4 illustrates the example in section 2 using the notion of RoleEP. In
step 1, the user proxy object binds itself to the wisitor role in the Roaming
environment at host 1 and becomes the agent. This agent can roam around
hosts using mobility functions given by the wvisitor role. In step 2, the user proxy
agent binds itself to the manager role in the ContractNet environment at host
2 and can execute the contract-net protocol using collaboration functions given
by the manager role. Step 3 shows that the user proxy agent acquires other
kinds of role functions after step 2. Figure 4 shows dynamic compositions of
environments. Environments of the user proxy agent are composed by Roaming,
ContractNet and so on.

Stepl

Environment "Roaming"

Step2

v \
,-* (contractor)

(contractor)

Environment "Roaming’

(contractor)

Environment "ContractNet"

Step3 Other Environments

(contractor)

(manager), N (contractor) §

Environment "Roaming" Host 2

(contractor)

Environment "ContractNet"

notation
(role)

agent
€« » Mmessage communication

—__ , migration

Fig. 4. Dynamic evolution of environment

In general AOP, aspects that construct a system are statically defined when
the system is designed, and do not change from the beginning of computation to
the end. On the other hand, environments proposed in RoleEP can be defined
separately and compositions of environments can be re-arranged dynamically. A
distributed application based on mobile agents is composed of environments that
can be added or deleted dynamically. Number, kinds and topologies of collab-
orations among agents may change dynamically. Compositions of environments
can be re-arranged dynamically as a distributed application evolves its functions
dynamically in order to adapt itself to its external context. Participating in en-
vironments, an agent can engage in multiple roles and collaborate with other
agents of each environment.

4 Java RoleEP Framework Epsilon/J

Epsilon/J is a framework that supports RoleEP concepts including environment
and roles. This framework is implemented on Aglets. In this section, features of
Epsilon/J are explained by describing the example presented in section 2.

4.1 Environment descriptions

In Epsilon/J, an environment class is defined as a subclass of the Environment
class, and a role class is defined as a subclass of the Role class. The Role class
is implemented as a subclass of the Aglets class that has mobility functions.
The following is a program that defines the environment class Roaming and
ContractNet. In the Roaming environment class, the Visitor role class is defined.
An object becomes an agent that can roam around hosts by binding itself to a
role instantiated from the Visitor class. On the other hand, in the ContractNet
environment class, the Manager role class and the Contractor role class are
defined. An agent, which arrives from another host, acquires new functions that
are necessary for behaving as a manager by binding itself to a role instantiated
from the Manager role.

The Roaming environment class

public class Roaming extends Environment{
public void onEnvironmentCreation(String environmentName){}
public class Visitor extends Role{

public void onRoleCreation(String roleName){
// Add this role whose name is specified by "roleName"
// to the "Roaming" environment.

Roaming.this.addRole(roleName, this);
addBindingInterface ("executeTask");

}

public void roam(){
SeqPlanItinerary itinerary = new SeqPlanItinerary(this);

}
}
}

The onFEnvironmentCreation is a constructor that is called when an environ-
ment is instantiated. The onRoleCreation is a constructor that is called when
a role is instantiated. These names are based on the name of the Aglet’s con-
structor onCreation. The role’s name, the parameter of the onRoleCreation, is
an identifier of a role instance. This name identifies roles instantiated from the
same Visitor role class. Roles that belong to the same role class can exist in the
same environment. Epsilon/J presents directory services based on role names.
The environment name in the onEnvironmentCreation is treated in the same
manner.

In the Visitor role class, the binding-interface executeTask, which is an in-
terface of a method that is invoked when an agent arrives at a host, is added
dynamically. An agent, which is composed of an object and an instance created
from the Visitor role class, roams around hosts and executes the executeTask at
each host.

The ContractNet environment class

public class ContractNet extends Environment{
public void onEnvironmentCreation(String environmentName){}

public class Manager extends Role{
public void onRoleCreation(String roleName){
ContractNet.this.addRole(roleName, this);

public void start(O{}
public void bid(Contractor c){}
public void end(Info info){}

}

public class Contractor extends Role{
public void onRoleCreation(String roleName){
ContractNet.this.addRole(roleName, this);
addBindingInterface ("executeTask");

}

public void taskAnnounce(Manager m){}
public void award(Manager m){
m.end(executeTask());

4.2 Object descriptions

The following is a program that defines the class UserProzy and the class Search-
Info. An object instantiated from the UserProxy class is bound to a visitor role
instantiated from the Visitor class and a manager role instantiated from the
Manager class. A class of an Epsilon/J’s object is defined as a subclass of the Ep-
silonObj class that presents functions for binding-operations. The onFEpsilonOb-
jCreation is a constructor that is called when an EpsilonObj is instantiated.

The UserProzy class

public class UserProxy extends EpsilonObj{

public void onEpsilonObjCreation() {

// Search a visitor role "visitorRole"
// and bind this user proxy to the visitor role.
// This user proxy becomes an agent that can roam around hosts.

visitorRole.bind(this, "executeTask", "executeContractNet");
visitorRole.roam();

public void executeContractNet() {
// Search a manager role "managerRole"
// and binds this user proxy to the manager role.
// This user proxy becomes an agent that can act as a manager.

managerRole.bind(this); // there are not binding-interfaces.
managerRole.start();

The InfoSearcher class

public class InfoSearcher extends EpsilonObj{

public void onEpsilonObjCreation() {
// Search contractor roles existing in the environment "contractnetEnv"
// that is instantiated from "ContractNet".

Contractor [] allContractorRoles
= contractnetEnv.searchRole("Contractor");

// Select a role "contractorRole" from "allContractorRoles"
and bind this information searcher to the role.
// This information searcher becomes an agent

// that can act as a contractor in the "contractnetEnv".

contractorRole.bind(this, "executeTask", "searchInfo");

}

public void searchInfo(){...}
public void search2Info(){...3}
}

5 Reflection and Epsilon/J implementation

5.1 Epsilon/J implementation

Epsilon/J presents built-in classes including Environment, Role and EpsilonOb-
ject. Mechanisms such as binding-interfaces and binding-operations are contained
in these built-in classes that are implemented by using Java core reflection APIs
(Application Programming Interfaces). Using a reflection mechanism, method
signatures defined in objects/roles/environments can be introspected and in-
voked dynamically. If a message received by a role corresponds to a binding-
interface, the message is transformed to a signature that is specified as an argu-
ment in a binding-operation* and delegated to an object bound to the role. This

4 In the current implementation, a transformation of a signature is limited to renaming
a message name.

approach is similar to the Composition Filters(CF)[1][8] approach. In CF, an ob-
ject consists of an interface layer that contains input/output message filters and a
kernel object. A role in RoleEP corresponds to a message filter in CF. As shown
in Figure 3, binding-interfaces can be wrapped with before/after actions that
describe synchronization constraints, error checking strategies, security checking
strategies, coordination constraints and so forth.

Since mechanisms of binding-interfaces and binding-operations are imple-
mented very simply in Epsilon/J, decline in performance caused by adding
RoleEP features of this kind to the original Aglets mobile agent system is slight.
In Aglets, moreover, a dynamic method dispatching mechanism is already used
in order to realize a message as an object. Other features such as implementa-
tion of environment methods/attributes may prompt discussion. In Epsilon/J,
information on an environment such as role references, role host addresses and
environment methods/attributes is stored intensively in a host where the envi-
ronment is instantiated. If a role does not reside in a host where the correspond-
ing environment exists, the role has to execute remote-accessing in order to use
the above kinds of information. In Epsilon/J, the notion of messenger role is in-
troduced to realize role-to-role remote communication and role-to-environment
remote communication. A messenger role is a special role that brings a message
object from one host to another host. In Epsilon/J, an API function for message
communication is prepared to encapsulate existence of messenger roles. This
API function decides automatically whether communication is remote or local.
If communication is remote, the API function uses a messenger role. Otherwise,
the function sends a message normally. The mechanism of a messenger role may
cause some kind of decline in performance.

5.2 Reflection facilities in Epsilon/J

Epsilon/J gives reflection facilities that can introspect environments and roles
—for example, a list of environment instances/names, a list of method names
in an environment, a list of role instances/names in an environment, a list of
method/binding-interface names in a role. Using these facilities, dynamic as-
pects of programs can be described easily: 1) An object can search an environ-
ment that the object wants to adapt to; 2) An object can check if the object is
able to bind to a role. The object must have methods corresponding to binding-
interfaces of the roles. Environments in RoleEP can be considered as execution
environments for objects. Binding-operations and facilities for introspecting en-
vironments/roles can be regarded as some kinds of MOPs (Metaobject protocols)
that are provided as Epsilon/J class libraries. For example, a binding-operation is
implemented in Role class and a customized binding-operation such as a binding-
operation with security checking can be described by defining a subclass of Role
class.

6 Discussion

6.1 Merits of RoleEP

RoleEP addresses problems pointed out in section 2 as follows:

— Mobility/collaboration functions can be separated from original functions
completely and can be encapsulated within environment descriptions. This
solves problems that appeared in Case 1 and 2.

— The problem that descriptions of role behavior depend on interface names
of core classes in Case 3 can be solved by the binding-interface mechanism.

Moreover, there are attractive properties as follows:

— Construction mechanism for mobility/collaboration components: RoleEP is
beneficial for constructing mobility /collaboration components. For example,
the environment class ContractNet can be reused in many distributed appli-
cations based on mobile agent systems. Environment classes can be regarded
as mobility/collaboration components.

— Evolution mechanism for agents: In RoleEP, an object becomes an agent
by binding itself to a role that belongs to an environment. An object can
dynamically evolve to an agent that can play multiple roles. Using RoleEP,
programs that adapt to external context can be described easily.

— Agentification mechanism: Genesereth and Ketchpel show three approaches
for converting objects into agents[12]: 1) an approach that implements a
transducer that mediates between an object and other agents, 2) an ap-
proach that implements a wrapper, and 3) an approach that rewrites an
original object. In RoleEP, a role corresponds to a transducer that accepts
messages from other agents and translates them into messages that an object
can understand. Although general agentifications are implemented statically,
a connection between an object and a transducer is created dynamically
through a binding-operation in RoleEP. RoleEP can be regarded as one of
the dynamic agentification mechanisms. In RoleEP, mobility/collaboration
functions needed for mobile agents are described in terms of roles and other
functions are described in terms of objects. In order to separate these two
kinds of functions completely, roles have facilities as transducers that trans-
late message interactions among roles to message interactions among objects.

6.2 Comparisons with AOP

Table 1, which extends an AOP comparison method proposed in [6], compares
RoleEP with AOP. RoleEP emphasizes dynamic aspect syntheses and dynamic
evolution. Although AOP and RoleEP have common viewpoints, there is a big
difference between them. In AOP, an executable program can be constructed
only by objects even if there are no aspects that add cross-cutting properties to

viewpoint AOP RoleEP

aspects aspects environments and roles
components components objects

join points join points binding-interfaces

(between aspects and components)

weaving method weaver binding-operation
aspect reuse emphasized emphasized

dynamic evolution not emphasized|emphasized

Table 1. AOP vs RoleEP

objects. On the other hand, objects cannot organize a program without environ-
ments in RoleEP.

In RoleEP, the use of binding-operation eliminates the necessity of AOP
style weaving. Introduces weaving in AspectJ can be replaced by adding role
methods through binding-operation. However, advises weaving does not corre-
spond to any model constructs in RoleEP. This is a weak point of RoleEP, and
reduces the ability to prevent code duplication. From the viewpoint of static
evolution, advises weaving is very useful because it prevents code duplication.
From the viewpoint of dynamic evolution, however, advises weaving is slightly
risky because it is difficult to understand real behaviors. In Kendall’s approach,
introduces weaving only adds a method interface, and the body of the method
is added through advises weaving. This kind of advises weaving can be realized
by the binding-operation.

6.3 Comparisons with the pluggable composite adapter

Mezini, Seiter and Lieberherr propose a new language construct, called a plug-
gable composite adapter, for expressing component gluing[23]. In the pluggable
composite adapter, a component is a set of collaborating classes that defines
some functionality. A pluggable composite adapter defines how to dynamically
extend a component with a new collaboration. The component is adapted dy-
namically to play roles in the collaboration without changing the component’s
classes. In addition, a pluggable composite adapter defines how to glue together
two independently developed components C1 and C2, where C2 is an abstract
collaboration. The following is the structure of the pluggable composite adapter.

adapter A {

Field_Method_Defs
Helper_Class_Defs

{ adapter R adapts C1.B [extends C2.S] adaptation_body }*

C1.B is a class of a component Cl. Through adapts relation, an instance
of C1.B acquires a function given in adaptation_body. An instance of adapter
R is created only when an instance of C1.B comes into R’s scope. Adapter A
and adapter R correspond to an environment and a role in RoleEP respectively.

Adaptations are similar to binding-operations in RoleEP. Using the pluggable
composite adapter, the contract-net protocol can be described as follows.
adapter ContractNet {
adapter Manager adapts UserProxy {
public void start(O{...}

public void bid() {...}
public void end() {...}

adapter Contractor adapts InfoSearcher {
public void taskAnnounce(){...}
public void award(){ InfoSearcher.this.searchInfo(); }

}
}

Notions of the pluggable composite adapter are quite similar to RoleEP. How-
ever, there are some differences between them as follows: 1) A relation between
an adapter and an adaptee is described statically in the the pluggable compos-
ite adapter; 2) Descriptions of adapter’s behavior depend on interface names of
adaptee’s class in the the pluggable composite adapter.

7 Related works

Bardou shows comparisons between AOP and related approaches, namely Role
Modeling[2], Activities and roles[21], Subject-Oriented Programming[14], Split
objects[5] and Us ”a subjective version of SELF”[26] in [6]. Besides Role model-
ing, a lot of other research has been done concerning role concepts[19]{20][9][27].
Van Hilst and Notkin propose the idea of role components, which are described
by C++ templates, to implement collaboration-based design[29]. This approach
is similar to the mix-in approach. In Coordinated Roles proposed in [24], descrip-
tions of collaborations are separated from descriptions of objects by using role
concepts. Although this approach is similar to the binding-interface concepts,
there is no concept of dynamic binding between an object and a role in Coor-
dinated Roles. In these approaches, dynamic evolution or dynamic synthesis of
collaboration structures is not emphasized. Split objects and Us are based on a
delegation mechanism that enables dynamic evolution.

On the other hand, adaptations to external context are studied from the
viewpoint of how a single object evolves dynamically—for example, how a per-
son acquires methods and attributes when he/she does a job, marries and so
on. In the Subject Oriented Programming, an object acquires new functions by
participating in subjects. The concept of subjects is similar to the concept of
environments in RoleEP. Mobile Ambients is a model that gives a layered agent
structure[7]. In this model, agents run on fields constructed by synthesizing con-
texts (environments) dynamically.

8 Conclusions

Distributed applications that reside in the Internet environment, whose struc-
tures change dynamically, are spreading rapidly. Most applications are imple-

mented in traditional programming languages, and have many embedded logics
according to individual environments. These applications must switch to new
logics as environments change. As a result, these applications need to be restruc-
tured drastically when they have to adapt to new environments. New computa-
tion paradigms and programming languages are necessary in order to alleviate
this requirement. RoleEP that we have proposed in this paper is one approach
to address this issue. In this paper, the effectiveness of RoleEP was discussed
from the viewpoint of mobile agent applications. However, the notion of RoleEP
is quite general and can be applied to other kinds of applications that need
mechanisms for separation of concerns.

References

1. Akist, M. and Tripathi, A.: Data Abstraction Mechanisms in Sina/ST, Proceed-
ings of the Conference on Object-Oriented Programming Systems, Language, and
Applications (OOPSLA’88), pp.265-275, 1988.

2. Andersen, E.P. and Reenskaug, T.: System Design by Composing Structures of
Interacting Objects, Proceedings of the European Conference on Object-Oriented
Programming (ECOOP’92), Lecture Notes in Computer Science, Springer, vol.615,
pp.133-152, 1992.

3. Aridor, Y. and Lange, D.B.: Agent design patterns: Elements of agent application
design, Proceedings of Agents’98, 1998.

4. AspectJ. http://aspectj.org/.

5. Bardou, D. and Dony, C.: Split Objects: a Disciplined Use of Delegation within
Objects, Proceedings of the Conference on Object-Oriented Programming Systems,
Language, and Applications (OOPSLA’96), pp.122-137, 1996.

6. Bardou, D.: Roles, Subjects and Aspects: How do they relate?, Proceedings of the
Aspect-Oriented Programming Workshop at ECOOP’98, 1998.

7. Cardelli, L. and Gordon, A.D.: Mobile Ambients (Extended Abstract), the pro-
ceedings of the workshop on Higher Order Operational Techniques in Semantics,
1997.

8. Czarnecki, K. and Eisenecker, U.W.: Generative Programming, Addison-Wesley,
2000.

9. Fowler, M.: Dealing with Roles, Proceedings of the 4th Annual Conference on
Pattern Languages of Programs, 1997.

10. Fuggetta, A., Picco, G.P.d, and Vigna, G.: Understanding Code Mobility, IEEFE
Transactions on Software Engineering, vol.24, No.5, pp.342-361, 1998.

11. Gamma, E., Helm, R., Johnson, R., and Vlissides, J.: Design Patterns, Addison-
Wesley Publishing Company, Inc., 1995.

12. Genesereth, M.R. and Ketchpel, S.P.: Software Agents, Communications of the
ACM, vol.37, No.7, pp.48-53, 1994.

13. Guerraoui, R. et al.: Strategic Directions in Object-Oriented Programming. ACM
Computing Surveys, Vol.28, No.4, pages 691-700, 1996.

14. Harrison, W. and Ossher, H.: Subject-oriented Programming, Proceedings of the
8th Conference on Object-Oriented Programming Systems, Language, and Appli-
cations (OOPSLA’93), pp.411-428, 1993.

15. IBM: Aglets Software Development Kit Home Page,
http://www.trl.ibm.co.jp/aglets/index.html, 1999.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Kendall, E.A.: Role Model Designs and Implementations with Aspect-oriented
Programming, Proceedings of the Conference on Object-Oriented Programming
Systems, Language, and Applications (OOPSLA’99), pp.353-369, 1999.

Kiczales, G., Lamping, J., Mendhekar A., Maeda, C., Lopes, C., Loingtier, J., and
Irwin, J.: Aspect-Oriented Programming, Proceedings of the European Confer-
ence on Object-Oriented Programming (ECOOP’97), Lecture Notes in Computer
Science, Springer, vol.1241, pp.220-242, 1997.

Kiniry, J. and Zimmerman, D.: A Hands-On Look at Java Mobile Agents, IEEE
Internet Computing, vol.1, No.4, 1997.

Kristensen, B.B.: Object-oriented Modeling with Roles, Proceedings of the 2nd In-
ternational Conference on Object-oriented Information Systems (O0I1S’95), 1996.
Kristensen, B.B. and Osterbye, K.: Roles: Conceptual Abstraction Theory and
Practical Language Issues, Special Issue of Theory and Practice of Object Systems
(TAPOS) on Subjectivity in Object-oriented Systems, 1996.

Kristensen, B.B. and May, D.C.M.: Activities: Abstractions for Collective Be-
havior, Proceedings of the Furopean Conference on Object-Oriented Programming
(ECOOP’96), Lecture Notes in Computer Science, Springer, vol.1098, pp.472-501,
1996.

Lange, D. and Oshima M.: Programming and Deploying Java Mobile Agents with
Aglets, Addison-Wesley, 1998.

Mezini, M., Seiter, L. and Lieberherr, K.: Component Integration with Plug-
gable Composite Adapters, Software Architectures and Component Technology:
The State of the Art in Research and Practice, Mehmet Aksit, editor, Kluwer Aca-
demic Publishers, 2000.

Murillo, J.M., Hernandez, J., Sanchez, F., and Alvarez, L..A.: Coordinated Roles:
Promoting Re-usability of Coordinated Active Objects Using Event Notification
Protocols, COORDINATION’99 Proceedings, pp.-53-68, 1999.

Smith, R.G.: The Contract Net Protocol: High-Level Communication and Con-
trol in a Distributed Problem Solver, IEEE Trans. on Computers, vol.29, No.12,
pp.1104-1113, 1980.

Smith, R.B. and Ungar, D.: Programming as an Experience: The Inspiration for
Self, Proceedings of the FEuropean Conference on Object-Oriented Programming
(ECOOP’95), Lecture Notes in Computer Science, Springer, vol.952, pp.303-330,
1995.

Tamai, T.: Objects and roles: modeling based on the dualistic view, Information
and Software Technology, Vol. 41, No. 14, pp. 1005-1010, 1999.

Ubayashi, N. and Tamai, T.: An Evolutional Cooperative Computation Based on
Adaptation to Environment, Proceedings of Sixth Asia Pacific Software Engineer-
ing Conference (APSEC’99), IEEE Computer Society, pp.334-341, 1999.
VanHilst, M. and Notkin, D.: Using Role Components to Implement Collaboration-
Based Designs, Proceedings of the Conference on Object-Oriented Programming
Systems, Language, and Applications (OOPSLA’96), pp.359-369, 1996.

