
Objects and Roles:
Modelling based on the Dualistic View

Tetsuo Tamai
(University of Tokyo)

July 3, 2002

1 Dual Concepts of Objects and Roles

Software engineering has been producing a number of models or modeling methods,
e.g. the data flow model, the state transition model, and the entity relationship model,
just to name a few [35]. Models are in general composed of elements and structures
combining those elements. Thus, the problem of constructing a “good” model depends
on how to choose an appropriate set of model elements and how to identify a meaning-
ful structure composed of those elements.

Models are developed mainly for two objectives. One is to map a real world or
domain to a model so as to enable analysis on the problem within its context. Domain
models and analysis models fall in this category. The other objective is to build a system
image to be developed as a model. System models and design models are examples of
the latter.

Elements of system design models have traditionally been called modules and the
process of identifying modules is called modularization. Ever since object-oriented
technology was widely recognized as applicable not only to programming but also to
analysis and design, objects have been adopted as the elements of models. Now, object
models are being used “seamlessly” from the analysis phase through the design phase
and to the implementation phase.

When modeling process, regarded as an activity of identifying objects and their
structures, is conducted in the top-down manner, it can be called decomposition and
when conducted in the bottom-up manner, it can be called composition. Although the
terms composition and decomposition have been used for a long time in conventional
modularization techniques, they are still valid in the context of object-orientation. Ac-
tual modeling is not a pure composition or decomposition process but some mixture of
the two. But still it should be correct to say that the major task of modeling is achieved
by way of composition and decomposition.

However, there have been arguments that the monistic view of modeling based
solely on objects is often insufficient. Instead, a dualistic view based on objects and
roles are advocated by a number of researchers and practitioners. Motivations for intro-
ducing roles are various and relations put between objects and roles are also different

1



by models. One way of classifying modeling methods based on the object/role dualism
is by the weight of balance put on objects and roles.

1) Objects-are-main-and-roles-are-sub case: In major OO analysis methods, roles
are considered at the stage prior to the step of identifying a set of objects, where roles
represent responsibilities to be assumed by some objects. Thus, listing up roles is a
means for listing up objects. This type of roles are considered in terms of collaborations
by objects and appear only at the analysis or general design phase, disappearing from
implemented programs.

2) Objects-and-roles-are-equally-treated case: This may be called a genuine dual-
ism while the first case is an unbalanced dualism. Many computational models and
languages that fall in this category have been proposed, most of which are for research
purposes.

The second dimension of classifying dualistic modeling methods is by motivations,
including collaboration, adaptation, evolution, and mobility. In the following sections,
we will survey modeling methods based on the object/role dualism, characterizing them
by their motivations.

2 Motivations

2.1 Collaboration

As mentioned in the previous section, collaboration of objects is treated in many OO
analysis methods in terms of roles. In this view, collaboration is interpreted as func-
tions or behaviors realized by interaction among a group of roles. Objects are entities
independent from roles and an object participates in a collaboration by playing some
role of the corresponding collaboration pattern. An object may take part in multiple
collaborations assuming different roles in different collaborations. Thus, the character-
istics of an object may be clarified by consolidating roles the object plays in multiple
collaborations.

A typical way of describing a collaboration is by specifying use-cases or behavioral
scenarios as observable behaviours of the collaboration. This approach was originally
advocated by I. Jacobson [19] and is inherited by the Unified Modeling Process [18].
In UML, use-cases are illustrated by use-case diagrams and also sequence diagrams
or collaboration diagrams are used in combination to describe collaborations [2]. A
similar approach is taken by Wirfs-Brock et al. [37], where responsibilities to be taken
by objects for achieving various types of collaborations are given much attention and a
kind of Class-Responsibilities-Collaboration Cards [1] is adopted to describe these re-
lations. In these methodologies, the word role is not used but the corresponding concept
is captured as an aspect of objects engaged in collaborations 1. Thus, collaborations
are considered for obtaining an appropriate set of objects that compose an object model
and responsibility is not an orthogonal concept to object but its granularity is close to
methods of an object.

1In UML, the word role is used for a different meaning, i.e. to give a name to each direction of an
association.

2



In some other OO development methodologies, the concept of roles is given much
higher position so that the term “role modeling” is created and extensively used. A
typical example is the OOram methodology [26], which not only defines role models
but also integrates them by the step of role model synthesis. Design patterns can also be
regarded as describing patterns of collaboration. The works of D. Riehle further extend
this view and employ the notion of role modeling to model object migration [36] and
to design composite patterns [27] and frameworks [28]. Also related is the work by B.
Kristensen et al. [21].

Also related is the notion of contracts. Contracts, proposed by R. Helm et al.
[14] is a construct for the explicit specification of behavioral compositions. A contract
defines a set of communicating participants and their contractual obligations. This
notion of participants correspond to roles but participants are actually objects and thus
the separation of objects and roles are somewhat blurred.

In these methodologies, roles play an important part at the phases of analysis and
design but usually become invisible in the implementation. However, there are some
works that aim at preserving roles explicitly in programs. For example, VanHilst and
Notkin [34] used class templates of C++ to implement roles. One of the objectives of
this proposed method is to reuse roles besides or even in stead of objects.

2.2 Adaptation, Evolution and Mobility

As the case of collaborations shows, there is a reciprocal relation between objects and
roles, i.e. an object can play multiple roles at a time and a role can be played by multiple
objects. This scheme can be conveniently employed in various situations. One of
the straightforward application is to handle objects that share properties of different
classes. M. Fowler [7] gives an example of personnel roles in a company to be assumed
by employees. He lists up engineers, salesmen, directors and accountants as roles and
put a question how to deal with situations such that a person plays more than one role
or a person changes his or her role in the lifetime. He shows several patterns that solve
this problem and gives a generic name role pattern.

2.2.1 Adaptation

Fowler’s motivation can be paraphrased or slightly extended as needs for adaptation.
This is a motivation to let objects adapt to multiple environments or changing environ-
ments. Objects endowed with adaptability are often called agents and pursued not only
in the software engineering community but also in the AI and network communities
[3]. One of the key issues is to realize adaptation dynamically.

Honda et al. [15] gives an example of adaptation. A woman Hanako, modeled as an
object, marries with Taro and adapts to the environment family. She then gets employed
as a researcher by a research laboratory and adapts to the environment laboratory.
The adaptation should be made dynamically and the object Hanako should preserve its
identity when she enters a new environment like the lab or even after she quits the lab
for some reason.

There can be various ways to tackle this problem. There are efforts, especially in
the field of distributed AI or multi-agent systems, to develop technologies that let ob-

3



jects (or agents) autonomously transform or re-organize themselves according to the
situation or environment they are in. A typical example is Gaea, an “organic program-
ming language” designed by Nakashima et al. [25]. A program in Gaea composed of
units called cells adapts itself to the situation through re-ordering and replacing cells
dynamically. Approaches like this is challenging but still under development. On the
other hand, an approach based on multiple inheritance or a mixin type technique is al-
ready matured but, as easily guessed, hard to meet the requirement of dynamic change.
Fowler shows some neat techniques including “hidden delegate” and “state object” to
implement dynamic role assignment within the conventional object-oriented program-
ming framework.

Of course, the delegation based approach is a natural alternative [33]. However,
delegation is a relatively primitive operation. We may want to think at a more abstract
level. A simple but effective way is provided by the object/role dualistic model. An
environment is represented by a set of roles that interact each other. The environment
itself may also be provided with its own attributes and methods. An object adapts to
the environment by assuming or combining with one of its roles and thus acquiring
properties and capabilities to fit in the new environment.

Honda et al.’s work on Morphe [15] can be seen as an example based on this
role/environment approach. In their model, suppose an object (e.g. Hanako) enters
an environment (e.g. a laboratory) and assumes a role (e.g. a researcher), then the ob-
ject acquires a new set of attributes and behaviors or alters some of the attributes and
behaviours already possessed by the object through following transformation rules as-
sociated with the role. Why this strategy of employing transformation rules is adopted
in their model may be partly explained by the fact that the underlying language is a
constraint based OO language.

Ubayashi & Tamai’s Epsilon model [32] takes a more straightforward approach
of binding an object to a role instance when an object enters a context (used here
as a synonym for an environment). More details of this binding mechanism will be
explained in the later section.

2.2.2 Evolution

When adaptation takes place dynamically in the course of time, it can be called evolu-
tion. In this view, objects evolve as the environment surrounding them changes. Gott-
lob et al. [10] deals with dynamic change of objects (but since their main concern is data
base, objects are more like data base schemas) using the concept of roles. They claim
that inheritance is class based and thus inconvenient for handling dynamic changes.
Instead, they propose a role hierarchy and realize specialization and inheritance at the
instance level.

They list six features of roles:

� Various roles of an entity may share common structure and behaviour;

� Entities can acquire and abandon roles dynamically;

� Roles can be acquired and abandoned independently of each other

� Entities exhibit role-specific behaviour;

4



� Roles restrict access to a particular context;

� Entities may occur repeatedly in the same type of role.

This is a good summary of the properties of roles that hold not only in their model
but also in other role based models.

2.2.3 Mobility

When adaptation takes place geographically, i.e. an object adapts to a new environment
which is located away from the old place it belonged to and where the object has moved
into, then it can be called adaptation due to mobility. Kumeno et al.’s Flage [22] can
be seen as a model of realizing mobile agents through such adaptation. An object (or
agent) enters a new possibly remote environment and adapts to it through acquiring
necessary functions. In their model, the concept of roles is not employed and every
object that enters an environment acquires the same set of behaviours. If behaviours
can depend on roles that compose the environment, then the model becomes close to
Epsilon.

There are a number of researches and developments of mobile agent systems [23,
17, 29, 30] but no other approaches as far as we know take the concept of object/role
dualism.

2.3 Other related motivations

There are many other works that by and large share motivations as described above but
take different approaches for solutions. Notable ones are subject oriented programming
and aspect oriented programming. They share the notion that models or systems can be
grasped differently by views. The former calls the view subject and the latter aspect.

Subject Oriented Programming Harrison & Ossher [13] states that their goal is “to
facilitate the development and evolution of suites of cooperating applications.” They
specifically emphasize that the same object would be seen differently by “subjects” and
yet there should be coherent intrinsic properties inside the object. They propose some
probable methods for reconciling various views. The way they see cooperation in this
framework is by sharing an object and explicit collaborations as discussed in Section
2.1 are not necessarily intended.

Aspect Oriented Programming Kiczales et al. [20] claims that a system modular-
ization structure designed from one aspect is often in conflict with modularization from
another aspect. Thus, they propose a method of describing aspects separately and then
weaving them together to obtain a consolidated system. An aspect here may corre-
spond to a field of collaboration but aspects are designed at the programming phase
and not created dynamically. Thus, the aspect oriented programming is not so con-
scious about adaptation or dynamic evolution but rather focuses on the modularization
methodology.

5



3 Composition as an Implementation Mechanism

As we have seen briefly in Section 2.2.1, there can be at least three different approaches
in implementing object/role relationships:

1. multiple inheritance,

2. composition,

3. transformation.

Multiple inheritance has a problem in handling dynamic changes. Transformation,
especially that of exploring autonomous adaptation, is still a premature technology.
Compared to them, composition is a simple but powerful approach that suits for dy-
namic adaptation.

In the conventional OO methodology, composition has also been treated statically,
i.e. a composite retains references to its components in its instance variables. Refer-
ences may be changed through assignment to the variables but the structure of the com-
posite does not change and the assignment is constrained by types and other interface
conditions. Delegation based languages like Self allow more flexible composition. But
they mainly focus on how to share common functions at the instance level and have lit-
tle intention of letting two or more objects combine together to form a larger structure.
Delegation is one directional and two objects related by delegation relation preserve
their relatively independent nature.

How composition is used in the works surveyed so far? Honda et al. calls their
mechanism in Morphe adaptive composition but as explained before, their composition
is accompanied by transformation. It is generally not easy to decompose a composite
if the composition is undertaken through transformation.

Gottlob et al. [10] does not use the word composition. In their model, a set of roles
set up a hierarchy just like a class hierarchy but it is explained “a subtype in a role
hierarchy does not inherit definitions of instance variables and instance methods from
the supertype. (...) inheritance is defined at the instance level rather than at the class
level.” This sounds quite complicated but things may get simpler if it is explained in
terms of composition. An object instance can be combined to a role instance by com-
position, where the role hierarchy tree specifies the route of delegation at the instance
level. This delegation hierarchy could also be interpreted by composition, i.e. a role at
a node of the tree can be regarded as a composite packing nodes along the path from
the role node to the root.

Contracts by Helm et al. use the word compositions to describe their mechanism.
A contract specifies a composition at the class level and by instantiating a contract, a
behavioral composition is created. In that sense, compositions of the contracts model
remain in the conventional OO framework.

Compositions of the Epsilon model has the following characteristics:

1. Composition takes place when an object instance and a role instance are bound
together;

2. An object instance can be bound to multiple role instances residing in different
contexts;

6



3. As a role is also an instance it has its own state as well as its own set of methods
and preserve the state even after the separation from its pair object;

4. The state of an object and that of a role construct a Cartesian product state after
composition;

5. A method of an object and a method of a role can be overridden or renamed by
another method of the counterpart role or object and thus interaction between the
object and role states is made possible;

6. The above mechanism indicates that the binding of an object and a role can be
bi-directional as opposed to the uni-directional relation of delegation.

Behavioral semantics of such composition appear to be intuitively clear but still
require rigorous treatment. Statechart [11] has a construct of AND composition of two
or more state machines. Semantics of Statechart have been given by many researchers,
a typical one specified by the originator [12].

Also related are compositions of labeled transition systems. Behavioral properties
of composed systems where some states are possibly hidden to the observer can be
analyzed [4, 5].

Another approach for analyzing behavioral properties of composite systems is pro-
posed by S. Iida [16]. His approach is based on hidden sort algebra devised by J.
Goguen [9] and implemented in CafeOBJ, an algebraic specification language [6].

4 Epsilon Model and Language

In this section, we briefly overview the Epsilon model and language that is based on
the object/role framework.

4.1 Epsilon Model

The Epsilon model consists of three kinds of entities: objects, roles and contexts. Each
role belongs to a unique context. A context is a field of collaboration or an environment
and roles belonging to the context collaborate each other within that context. A context
defines a scope of reference for roles, i.e. a role can communicate only with other roles
in the same context. Thus, contexts provide description units of collaborations and
realize the separation of concerns.

An object can be bound to a role, through which it participates in the collaboration
specified by the context the role belongs to. This binding mechanism is basically what
is explained as composition in the section 3 and thus realizes adaptation of objects.
Binding takes place dynamically and an object can be bound to different roles at a
time. Also, it can unbind itself from the role any time. As opposed to an object, a role
cannot be bound to another role.

A context is essentially an object in that it may have its own state (attributes) and
methods. As a result, a context can be bound to a role of another context and thus a
layer structure of contexts can be created.

7



Figure 1 illustrates an example of Contract Net Protocol [31]. It is a protocol to
solve a problem collaboratively through negotiation of multiple processing nodes. A
contract may be given by a manager to a contractor who has bidden the lowest price.
A node can be a manager of one contract and a contractor of another. This problem
can be conveniently modelled by Epsilon; a contract is represented by a context and a
manager and contractor(s) by roles.

role:manager

role:contractor

������

���

context:contract-net 

�������

object

multiple binding

Figure 1: Contract Net Protocol

4.2 Epsilon Language

The language based on the Epsilon model is also named Epsilon. In Epsilon, roles and
contexts are first class constructs. Roles and contexts as well as objects are defined
in programs as classes and instantiated at the run time. Binding of objects to roles is
always done at the instance level.

As collaborations are explicitly described and encapsulated as contexts in Epsilon,
they can be reused as program components. Thus, design patterns of Gamma et al. [8],
for example, are good targets for building reusable program components and they will
be used not just as a catalogue of design know-how’s but reusable components.

A preliminary version of an Epsilon compiler was implemented on ABCL/R3, a
reflective concurrent object-oriented language [24].

8



References

[1] K. Beck and W. Cunningham. A laboratory for teaching object-oriented thinking.
In OOPSLA ’89, pages 1–6, 1989.

[2] G. Booch, I. Jacobson, and J. Rumbaugh. The Unified Modeling Language User
Guide. Addison-Wesley, Reading, 1999.

[3] J. M. Bradshaw. Software Agents. The MIT Press, 1997.

[4] Shing Chi Cheung and Jeff Kramer. Context constraints for compositional reach-
ability analysis. ACM Transactions on Software Engineering and Methodology,
5(4):334–377, October 1996.

[5] Shing Chi Cheung and Jeff Kramer. Checking safety properties using compo-
sitional reachability analysis. ACM Transactions on Software Engineering and
Methodology, 8(1):49–78, 1999.

[6] Ruazvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report: The Language,
Proof Techniques, and Methodologies for Object-Oriented Algebraic Specifica-
tion. World Scientific, 1998.

[7] Martin Fowler. Dealing with roles. http://www2.awl.com/cseng/titles/0-201-
89542-0/apsupp/. supplemental information to Analysis Pattern, Addison-
Wesley, 1997.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[9] Joseph Goguen and Grant Malcolm. A hidden agenda. Technical Report CS97-
538, UCSD, April 1997.

[10] G. Gottlob, M. Schrefl, and Röck. Extending object-oriented systems with roles.
ACM Transactions on Information Systems, 14(3):268–296, July 1996.

[11] David Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8:231–274, 1987.

[12] David Harel and Amnon Naamad. The statemate semantics of statecharts. ACM
Transactions on Software Engineering and Methodology, 5(4):293–333, 1996.

[13] W. Harrison and H. Ossher. Subject-oriented programming (a critique of pure
objects). In OOPSLA ’93, pages 411–428, 1993.

[14] R. Helm, I. M. Holland, and D. Gangopadhyay. Contracts: Specifying behavioral
compositions in object-oriented systems. In ECOOP/OOPSLA ’90 Proceedings,
pages 169–180, October 1990.

[15] Yasuaki Honda, Shigeru Watari, and Mario Tokoro. Compositional adaptation: A
new method for constructing software for open-ended systems. Computer Soft-
ware, 9(2):122–136, 1992. in Japanese.

9



[16] Shusaku Iida. An Algebraic Formal Method for Component Based Software De-
velopments. PhD thesis, Japan Advanced Institute of Science and Technology,
1999.

[17] ObjectSpace Inc. Objectspace voyager technical overview.
http://www.objectspace.com/voyager.

[18] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development
Process. Addison-Wesley, Reading, 1999.

[19] I. Jacobson, M. Christerson, P. Jonsson, and G. ”Overgaard. Object-Oriented
Software Engineering: A Use Case Driven Approach. ACM press, 1992.

[20] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-oriented programming. In Proceedings of the European Con-
ference on Object-Oriented Programming(ECOOP), Finland. Springer-Verlag,
June 1997.

[21] Bent Bruun Kristensen and Kasper Osterbye. Roles: Conceptual abstraction
theory and practical language issues. Theory and Practice of Object Systems,
2(3):143–160, 1996.

[22] F. Kumeno, H. Sato, T. Kato, and S. Honiden. Flage: A programming language
for adaptive software. In Proceedings of ICSE’98, volume 2, pages 103–108,
1998.

[23] B. D. Lange and M. Oshima. Programming and Deploying Java Mobile Agents
with Aglets. Addison-Wesley, 1998.

[24] Hidehiko Masuhara, Satoshi Matsuoka, and Akinori Yonezawa. Implementing
parallel language constructs using a reflective object-oriented language. In Re-
flection Symposium ’96, pages 79–91, April 1996.

[25] H. Nakashima and I. Noda. Dynamic subsumption architecture for programming
intelligent agents. In Proc. of International Conf. on Multi-Agent Systems 98,
pages 190–197. AAAI Press, 1998.

[26] T. Reenskaug, P. Wold, and O.A. Lehne. Working with Objects: the OOram
Software Engineering Method. Manning Publications, Greenwich, 1996.

[27] D. Riehle. Composite design patterns. In OOPSLA ’97, pages 218–228, Oct.
1997.

[28] D. Riehle and T. Gross. Role model based framework design and integration. In
OOPSLA ’98, pages 117–133, Vancouver, Oct. 1998.

[29] K. Rothermel, editor. Mobile Agents, volume 1447 of Lecture Notes in Computer
Science. Springer, 1998.

[30] I. Satoh. Agentspace web page. http://islab.is.ocha.ac.jp/agent/index.html.

10



[31] R. G. Smith. The contract net protocol: High-level communication and control
in a distributed problem solver. IEEE Trans. on Computers, 29(12):1104–1113,
1980.

[32] Naoyasu Ubayashi and Tetsuo Tamai. Modelling collaborations among objects
that change roles dynamically and its modularization mechanism. IEICE Trans.
on Information and Systems, 1999. to appear.

[33] David Ungar, Craig Chambers, Bay-Wei Chang, and Urs H”olzle. Organizing
programs without classes. Lisp and Symbolic Computation, 4(3):37–56, 1991.

[34] M. VanHilst and D. Notkin. Using Role Components to Implement Collaboration-
Based Designs. In OOPSLA ’96, pages 359–369, 1996.

[35] R. Wieringa. A survey of structured and object-oriented software specification
methods and techniques. ACM Computing Surveys, 30(4):459–527, 1998.

[36] R. Wieringa, Wiebren de Jonge, and Paul Spruit. Using dynamic classes and
role classes to model object migration. Theory and Practice of Object Systems,
1(1):61–83, 1995.

[37] R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object-Oriented Soft-
ware. Prentice Hall, Englewood Cliffs, 1990.

11


